期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two-photon polymerization-based 4D printing and its applications 被引量:1
1
作者 Bingcong Jian Honggeng Li +3 位作者 Xiangnan He Rong Wang Hui Ying Yang Qi Ge 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期1-25,共25页
Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes a... Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners. 展开更多
关键词 two-photonpolymerization 4D printing nano/micro fabrication MICROROBOT
在线阅读 下载PDF
Laser-based micro/nanofabrication in one, two and three dimensions 被引量:7
2
作者 Wei XIONG Yunshen ZHOU +9 位作者 Wenjia HOU Lijia JIANG Masoud MAHJOURI-SAMANI Jongbok PARK Xiangnan HE Yang GAO Lisha FAN Tommaso BALDACCHINI Jean-Francois SILVAIN Yongfeng LU 《Frontiers of Optoelectronics》 CSCD 2015年第4期351-378,共28页
Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modem nanoscience and technology and becomes critically important for numerous emerging ... Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modem nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanopho- tonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, roomtemperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrica- tion, the combination of additive two-photon polymeriza- tion (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which tional fabrication methods are challenging for conven- Considering the numerous unique advantages of laser-based techniques, the laser- based micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices. 展开更多
关键词 micro/nanofabrication laser material interac-tion carbon nanotubes (CNTs) graphene two-photonpolymerization (TPP) multi-photon ablation (MPA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部