期刊文献+
共找到916,535篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel 被引量:3
1
作者 M.M.RASHIDI A.HOSSEINI +2 位作者 I.POP S.KUMAR N.FREIDOONIMEHR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期831-848,共18页
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) p... The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel. 展开更多
关键词 NANOFLUID two-phase model wavy channel semi implicit method for pres-sure linked equation (SIMPLE) method
在线阅读 下载PDF
GLOBAL EXISTENCE OF CLASSICAL SOLUTION FOR A VISCOUS LIQUID-GAS TWO-PHASE MODEL WITH MASS-DEPENDENT VISCOSITY AND VACUUM 被引量:2
2
作者 王振 张卉 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期39-52,共14页
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowe... In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations. 展开更多
关键词 viscous liquid-gas two-phase model global classical solution VACUUM mass-dependent viscosity
在线阅读 下载PDF
LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD 被引量:1
3
作者 Wenjun WANG Zhen CHENG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第5期1921-1946,共26页
In this paper,the Cauchy problem for a two-phase model with a magnetic field in three dimensions is considered.Based on a new linearized system with respect to(c−c_(∞),P−P_(∞),u,H)for constants c_(∞)≥0 and P_(∞)&... In this paper,the Cauchy problem for a two-phase model with a magnetic field in three dimensions is considered.Based on a new linearized system with respect to(c−c_(∞),P−P_(∞),u,H)for constants c_(∞)≥0 and P_(∞)>0,the existence theory of global strong solution is established when the initial data is close to its equilibrium in three dimensions for the small H^(2) initial data.We improve the existence results obtained by Wen and Zhu in[40]where an additional assumption that the initial perturbations are bounded in L^(1)-norm was needed.The energy method combined with the low-frequency and high-frequency decomposition is used to derive the decay of the solution and hence the global existence.As a by-product,the time decay estimates of the solution and its derivatives in the L^(2)-norm are obtained. 展开更多
关键词 two-phase model magnetic field strong solution global existence decay rates
在线阅读 下载PDF
Numerical simulation of macrosegregation in steel ingots using a two-phase model 被引量:9
4
作者 Wen-sheng Li Hou-fa Shen Bai-cheng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期787-794,共8页
A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on t... A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on the system scale with microscopic relations for grain nucleation and growth. Then the model is used to simulate the solidification of a benchmark industrial 3.3-t steel ingot. Simulations are per- formed to investigate the effects of grain motion and pipe shrinkage formation on the final macrosegregation pattern. The model predictions are compared with experimental data and numerical results from literatures. It is demonstrated that the model is able to express the overall macrosegregation patterns in the ingot. Furthermore, the results show that it is essential to consider the motion of equiaxed grains and the formation of pipe shrinkage in modelling. Several issues for future model improvements are identified. 展开更多
关键词 steel ingots SOLIDIFICATION SEGREGATION SHRINKAGE modelling
在线阅读 下载PDF
Numerical Study of Heat Transfer and Flow Bifurcation of CuO Nanofluid in Sudden Expansion Microchannel Using Two-Phase Model
5
作者 Farhad A. Abbassi Mohsen Nazari Mohammad Mohsen Shahmardan 《Modern Mechanical Engineering》 2017年第2期57-72,共16页
In this paper, laminar forced convection of CuO nanofluid is numerically investigated in sudden expansion microchannel with isotherm walls and different expansion ratios (ER). An Eulerian two-fluid model is considered... In this paper, laminar forced convection of CuO nanofluid is numerically investigated in sudden expansion microchannel with isotherm walls and different expansion ratios (ER). An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. Eulerian-Eulerian two-phase model is very efficient because of considering the relative velocity and temperature of the phases and the nanoparticle concentration distribution. In solving the flow equations for both phases, the SIMPLE algorithm is modified for the coupling of the velocity and pressure and the continuity equations for both phases are combined in order to create the pressure correction equations. However, the Eulerian-Eulerian modeling results show higher heat transfer enhancement in comparison to pure water, so that for a 2% copper-water nanofluid, it has been observed a 35% increase of the heat transfer. The heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration, while the pressure drop increases only slightly. An investigation of the expansion ratio of microchannel shows that the average Nusselt number increases with decrease in expansion ratio as well as with increase in Reynolds number. Also, the Bifurcation has been occurred in higher Reynolds number that is different for each expansion ratio of the microchannel. 展开更多
关键词 Heat Transfer NANOFLUID SUDDEN Expansion MICROCHANNEL two-phase Eulerian-Eulerian
在线阅读 下载PDF
A quasi single-phase model for debris flows and its comparison with a two-phase model
6
作者 XIA Chun-chen LI Ji +2 位作者 CAO Zhi-xian LIU Qing-quan HU Kai-heng 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1071-1089,共19页
A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctua... A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably. 展开更多
关键词 DEBRIS flows QUASI SINGLE-PHASE mixturemodel Stresses DUE to fluctuations Well-balanced
原文传递
Influence of Fractal Dimension on Gas-Driven Two-Phase Flow in Fractal Porous Media:A VOF Model-Based Simulation
7
作者 Xiaolin Wang Richeng Liu +3 位作者 Kai Qiu Zhongzhong Liu Shisen Zhao Shuchen Li 《Computer Modeling in Engineering & Sciences》 2025年第7期289-307,共19页
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe... Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution. 展开更多
关键词 Fractal porous media gas-liquid two-phase flow fractal dimension vortex evolution VOF model displacement efficiency
在线阅读 下载PDF
Dynamic characterization of viscoelasticity during polymer flooding:A two-phase numerical well test model and field study
8
作者 Yang Wang Shi-Long Yang +3 位作者 Hang Xie Yu Jiang Shi-Qing Cheng Jia Zhang 《Petroleum Science》 2025年第6期2493-2501,共9页
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer... Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model. 展开更多
关键词 Polymer flooding two-phase flow Numerical well test model Viscoelastic characteristic Nonlinear flow Near-well blockage
原文传递
Modification of the bubble drag force model and prediction of gasliquid two-phase flow dynamics in blade-type multiphase pumps
9
作者 Yu-Qing Zhang Guang-Tai Shi +3 位作者 Man-Qi Tang Ye-Xiang Xiao Hai-Gang Wen Zong-Liu Huang 《Petroleum Science》 2025年第9期3770-3786,共17页
In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase dra... In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase drag forces highly challenging in numerical simulations.To achieve precise prediction of the drag forces on irregular bubbles within multiphase pumps,this study modifies the existing bubble drag force model and applies the revised model to the prediction of gas-liquid two-phase flow within multiphase pumps.The research findings indicate that the modified drag force model significantly enhances the accuracy of predicting flow characteristics within the pump,particularly under high gas volume fraction conditions.The simulation results for gas phase distribution and vorticity exhibit strong agreement with experimental data.The modified drag model better captures the accumulation of the gas phase at the suction side of the impeller outlet.It also accurately predicts the vortex characteristics induced by bubble backflow from the trailing edges of the diffuser.Additionally,the adjustment of the drag coefficient enhances the model’s ability to represent local flow field characteristics,thereby optimizing the performance simulation methods of multiphase pumps.Compared to traditional drag force models,the modified model reduces prediction errors in head and efficiency by 36.4%and 27.5%,respectively.These results provide important theoretical foundations and model support for improving the accuracy of gas-liquid two-phase flow simulations and optimizing the design of multiphase pumps under high gas volume fraction conditions. 展开更多
关键词 Bubble drag force Gas-liquid two-phase flow Blade-type multiphase pump Population balance model(PBM)
原文传递
Efficient prediction of gaseous n-hexane removal in two-phase partitioning bioreactors with silicone oil based on the mechanism and kinetic models
10
作者 Lichao Lu Tuo Ju +6 位作者 Yangdan Fang Jingtao Hu Zhuqiu Sun Zhuowei Cheng Qian Li Jianmeng Chen Dong-zhi Chen 《Journal of Environmental Sciences》 2025年第8期729-740,共12页
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec... Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation. 展开更多
关键词 Mass transfer N-HEXANE two-phase partitioning bioreactors Silicone oil
原文传递
Numerical investigation on the engraving process of a pyrotechnic actuator with an improved two-phase flow model of interior ballistic
11
作者 Yue Li Cong Liu +1 位作者 Cheng Cheng Genghui Jiang 《Defence Technology(防务技术)》 2025年第4期120-132,共13页
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput... By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs. 展开更多
关键词 Pyrotechnic actuator Engraving process two-phase flow Pressure oscillation
在线阅读 下载PDF
Modeling and Experimental Study of an Open Two-Phase Loop Driven by Osmotic Pressure and Capillary Force
12
作者 Hanli Bi Zheng Peng +5 位作者 Chenpeng Liu Zhichao Jia Guoguang Li Yuandong Guo Hongxing Zhang Jianyin Miao 《Frontiers in Heat and Mass Transfer》 2025年第1期55-70,共16页
As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it ... As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop. 展开更多
关键词 Multi-heat sources osmotic pressure two-phase loop dual-drive loop heat pipe
在线阅读 下载PDF
Petroleum recovery from salt cavern through natural gas displacement:Insights from a gas-oil two-phase flow model with gas dissolution and exsolution
13
作者 You-Qiang Liao Tong-Tao Wang +3 位作者 Tao He Dong-Zhou Xie Kai Xie Chun-He Yang 《Petroleum Science》 2025年第10期4226-4239,共14页
The challenge of wide brine source and its additional problems come from the economy(energy consumption and other costs),security(re-dissolution of surrounding salt rocks),and environment(groundwater pollution by brin... The challenge of wide brine source and its additional problems come from the economy(energy consumption and other costs),security(re-dissolution of surrounding salt rocks),and environment(groundwater pollution by brine)of salt cavern oil storage are worth examining to improve the efficiency of oil storage.Against this background,this work presented an operating mode of salt cavern oil and gas co-storage and using natural gas displacement for petroleum recovery.A gas-oil two-phase flow model with gas dissolution and exsolution was proposed to evaluate the application prospects of the new method precisely.Numerical studies indicated that the gas void fraction at the wellhead under quasi-steady state conditions is approximately 0.153,which belongs to bubbly flow,and the pressure at the wellhead of the central tube increased from 5.54 to 6.12 MPa during the entire transient flow stage,with an increase of 10.47%.Compared to the traditional method of using brine as the working fluid,the pump pressure rises from 2.92 to 14.01 MPa.However,if the new mode can be linked with the salt cavern gas storage and when the initial wellhead gas pressure exceeds 13 MPa,the energy consumption of the new method will be lower than that of the traditional brine-based operational mode.A new empirical formula is proposed to determine the two-phase flow pattern under different operating parameters.A special focus was given to energy consumption for oil recovery,which grows roughly in accordance with the operating pressure and oil recovery rate.However,the energy cost per volume of crude oil remains almost unchanged.This work provided a new solution for the serious brine problem and is expected to achieve petroleum recovery through natural gas displacement. 展开更多
关键词 Petroleum recovery Natural gas displacement Feasibility analysis Salt cavern Gas-oil two-phase flow Gas dissolution and exsolution
原文传递
Two-phase nonlocal integral model with bi-Helmholtz kernel for free vibration analysis of multi-walled carbon nanotubes considering size-dependent van der Waals forces
14
作者 Chang LI Rongjun CHEN +1 位作者 Cheng LI Hai QING 《Applied Mathematics and Mechanics(English Edition)》 2025年第11期2095-2114,共20页
Current studies on carbon nanotube (CNT) size effects predominantly employ Eringen’s differential nonlocal model, which is widely recognized as ill-suited for bounded domains. This paper investigates the free vibrati... Current studies on carbon nanotube (CNT) size effects predominantly employ Eringen’s differential nonlocal model, which is widely recognized as ill-suited for bounded domains. This paper investigates the free vibration of multi-walled CNTs (MWCNTs) with mathematically well-posed two-phase strain-driven and stress-driven nonlocal integral models incorporating the bi-Helmholtz kernel. The van der Waals (vdW) forces coupling MWCNT layers are similarly modeled as size-dependent via the bi-Helmholtz two-phase nonlocal integral framework. Critically, conventional pure strain-driven or stress-driven formulations become over-constrained when nonlocal vdW interactions are considered. The two-phase strategy resolves this limitation by enabling consistent coupling. Each bi-Helmholtz integral constitutive equation is equivalently transformed into a differential form requiring four additional constitutive boundary conditions (CBCs). The numerical solutions are obtained with the generalized differential quadrature method (GDQM) for these coupled higher-order equations. The parametric studies on double-walled CNTs (DWCNTs) and triple-walled CNTs (TWCNTs) elucidate the nonlocal effects predicted by both formulations. Additionally, the influence of nonlocal parameters within vdW forces is systematically evaluated to comprehensively characterize the size effects in MWCNTs. 展开更多
关键词 multi-walled carbon nanotube(MWCNT) two-phase nonlocal integral elasticity bi-Helmholtz kernel free vibration generalized differential quadrature method(GDQM) nonlocal van der Waals(vdW)force
在线阅读 下载PDF
Coupled Model of Two-phase Debris Flow,Sediment Transport and Morphological Evolution 被引量:5
15
作者 HE Siming OUYANG Chaojun +1 位作者 LIU Wei WANG Dongpo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2206-2215,共10页
The volume fraction of the solid and liquid phase of debris flows,which evolves simultaneously across terrains,largely determines the dynamic property of debris flows.The entrainment process significantly influences t... The volume fraction of the solid and liquid phase of debris flows,which evolves simultaneously across terrains,largely determines the dynamic property of debris flows.The entrainment process significantly influences the amplitude of the volume fraction.In this paper,we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth,the solid and fluid volume fractions and the bed morphological evolution.The model employs the Mohr–Coulomb plasticity for the solid stress,and the fluid stress is modeled as a Newtonian viscous stress.The interfacial momentum transfer includes viscous drag and buoyancy.A new extended entrainment rate formula that satisfies the boundary momentum jump condition(Iverson and Ouyang,2015)is presented.In this formula,the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models.A finite volume method using Roe’s Riemann approximation is suggested to solve the equations.Three computational cases are conducted and compared with experiments or previous results.The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows. 展开更多
关键词 debris flows two-phase model sediment transport entrainment rate finite volume method
在线阅读 下载PDF
The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model 被引量:3
16
作者 王者江 何樵登 王德利 《Applied Geophysics》 SCIE CSCD 2008年第1期24-34,共11页
Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wa... Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wave-field simulation in the porous medium is limited to two-dimensions and two-components (2D2C) or two-dimensions and three-components (2D3C). There is no previous report on wave simulation in three- dimensions and three-components. Only through three dimensional numerical simulations can we have an overall understanding of wave field coupling relations and the spatial distribution characteristics between the solid and fluid phases in the dual-phase anisotropic medium. In this paper, based on the BISQ equation, we present elastic wave propagation in a three dimensional dual-phase anisotropic medium simulated by the staggered-grid high-order finite-difference method. We analyze the resulting wave fields and show that the results are an improvement. 展开更多
关键词 BISQ model three-dimension numerical simulation staggered grid two-phase anisotropic medium.
在线阅读 下载PDF
Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media 被引量:4
17
作者 刘洋 魏修 《Applied Geophysics》 SCIE CSCD 2008年第2期107-114,共8页
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ... To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling. 展开更多
关键词 two-phase anisotropy FINITE-DIFFERENCE any even-order accuracy numerical modeling wave equations
在线阅读 下载PDF
LARGE-EDDY SIMULATION OF TWO-PHASE REACTING FLOW IN MODEL COMBUSTOR 被引量:1
18
作者 颜应文 赵坚行 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期1-8,共8页
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu... The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible. 展开更多
关键词 two-phase reacting flow large-eddy simulation pollutant emission AFTERBURNER
在线阅读 下载PDF
Study of the generalized mixture rule for determining effective conductivity of two-phase stochastic models 被引量:1
19
作者 余勇 吴小平 《Applied Geophysics》 SCIE CSCD 2010年第3期210-216,292,共8页
The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electric... The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electrical conductivity of multi-phase rocks presently. In this paper, we calculate the effective conductivity using the 3D finite element method for a large number of two-phase medium stochastic models. The GMR is then employed as an effective conductivity model to fit the data. It shows a very close relationship between the parameter J of GMR and the ratio of conductivities of the two phases. We obtain the equations of the parameter J with the ratio of conductivity of two phases for the first time. On this basis, we can quickly predict (or calculate) the effective conductivity of any twophase medium stochastic model. The result is much more accurate than two other available effective conductivity models for the stochastic medium, which are the random model and effective medium theory model, laying a solid base for detailed evaluation of oil reservoirs. 展开更多
关键词 Generalized mixture rule two-phase media effective conductivity
在线阅读 下载PDF
AVO forwarding modeling in two-phase media: multiconstrained matrix mineral modulus inversion
20
作者 林凯 贺振华 +3 位作者 熊晓军 贺锡雷 曹俊兴 薛雅娟 《Applied Geophysics》 SCIE CSCD 2014年第4期395-404,509,共11页
AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the ra... AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the rationality of the two-phase medium model. We used the matrix mineral bulk modulus inversion method and multiple constraints to obtain a two-phase medium model with physical meaning. The proposed method guarantees the reliability of the obtained AVO characteristicsin two-phase media. By the comparative analysis of different lithology of the core sample, the advantages and accuracy of the inversion method can be illustrated. Also, the inversion method can be applied in LH area, and the AVO characteristics can be obtained when the porosity, fluid saturation, and other important lithology parameters are changed. In particular, the reflection coefficient amplitude difference between the fast P wave and S wave as a function of porosity at the same incidence angle, and the difference in the incidence angle threshold can be used to decipher porosity. 展开更多
关键词 Matrix mineral bulk modulus two-phase media AVO forward modeling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部