A method is provided to achieve an initial basic feasible solution of a linear programming in this paper. This method dose not need introducing any artificial variable, but needs only solving an auxiliary linear progr...A method is provided to achieve an initial basic feasible solution of a linear programming in this paper. This method dose not need introducing any artificial variable, but needs only solving an auxiliary linear programming. Compared with the traditional two-phase method, it has advantages of saving the memories and reducing the computational efforts.展开更多
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me...Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The e...In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.展开更多
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec...Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.展开更多
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan...With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.展开更多
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine m...The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.展开更多
As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it ...As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristic...Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.展开更多
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffecti...In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.展开更多
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer...Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model.展开更多
Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle ...Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle model rely on solving implicit transcendental equations, which require iterative numerical root-finding methods,thereby introducing computational complexity and inefficiency. This paper proposes the high-precision explicit approximate solutions for the two models, directly correlating the geometric parameters with the flow parameters, thus significantly enhancing the efficiency and accuracy of two-phase flow analysis.展开更多
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow an...Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method(HMM)to describe the flow fields accurately.The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics(MD)simulations on the microscale level.Notably,the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model.The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in(J Comput Phys 469:111551,2022).To overcome the numerical complexity of the MD microscale model,a deep neural network is employed as an efficient surrogate model.The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions.To our knowledge,such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.展开更多
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The sta...Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The stability of liquid film is mainly determined by the characteristics of interfacial wave,which is rarely investigated right now.How to improve the stability of thin film has become a hot spot.In view of this,an advanced model based on the conventional Volume of Fluid(VOF)model is adopted to investigate the characteristics of interfacial wave in gas-liquid flow by using OpenFOAM,and the mechanism of formation and development of wave is revealed intuitively through numerical study.The effects from gas velocity,surface tension and dynamic viscosity of liquid(three factors)on the wave are studied respectively.It can be found that the gas velocity is critical to the formation and development of wave,and four modes of droplets generation are illustrated in this paper.Besides,a gas vortex near the gas-liquid interface can induce formation of wave easily,so changing the gas vortex state can regulate formation and development of wave.What’s more,the change rules of three factors influencing on the interfacial wave are obtained,and the surface tension has a negative effect on the formation and development of wave only when the surface tension coefficient is above the critical value,whereas the dynamic viscosity has a positive effect in this process.Lastly,the maximum height and maximum slope angle of wave will level off as the gas velocity increases.Meanwhile,the maximum slope angle of wave is usually no more than 38°,no matter what happens to the three factors.展开更多
The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,...The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.展开更多
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e...Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.展开更多
文摘A method is provided to achieve an initial basic feasible solution of a linear programming in this paper. This method dose not need introducing any artificial variable, but needs only solving an auxiliary linear programming. Compared with the traditional two-phase method, it has advantages of saving the memories and reducing the computational efforts.
文摘Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金supported by the National Natural Science Foundation of China (Grant No. 12202204)the Natural Science Foundation of Jiangsu Province (Grant No. BK20220953)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science and Technology Association's Young Talent Nurturing Program of Jiangsu Province (Grant No. JSTJ-2024-004)
文摘In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.
基金supported by the National Key Research and Development Program of China(No.2022YFC3702000)the National Natural Science Foundation of China(No.52070169)the Project of Bureau of Science and Technology of Zhoushan,China(No.2022C41013).
文摘Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.
基金supported by the Beijing Municipal Science&Technology Commission(Z231100006123010).
文摘With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.
基金supported by the National Natural Science Foundation of China(22378350).
文摘The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.
基金Science Foundation for Distinguished Young Scholars 2020-JCJQ-ZQ-042 Intelligent and Bionic Spacecraft Thermal Control Technology Inspired by Tree Sap Transport Principle.
文摘As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金the National Natural Science Foundation of China (Nos. 42302143, 42172159)China Geological Survey Project (No. DD20211350)support from the G. Albert Shoemaker endowment
文摘Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
文摘In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.
基金supported by the National Natural Science Foundation of China(52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(BYESS2023262)。
文摘Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model.
基金supported by the General Research Fund from the Research Grants Council of the Hong Kong Special Administrative Region of China (No. PolyU 15210624)。
文摘Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle model rely on solving implicit transcendental equations, which require iterative numerical root-finding methods,thereby introducing computational complexity and inefficiency. This paper proposes the high-precision explicit approximate solutions for the two models, directly correlating the geometric parameters with the flow parameters, thus significantly enhancing the efficiency and accuracy of two-phase flow analysis.
基金Funding Open Access funding enabled and organized by Projekt DEAL.When preparing this manuscript,the authors have kept the COPE guidelines on how to deal with potential acts of misconduct.The research leading to these results received funding from Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)through the project SFB-TRR 75 with the project number 84292822the DFG under Germanys Excellence Strategy-EXC2075with the project number390740016.
文摘Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method(HMM)to describe the flow fields accurately.The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics(MD)simulations on the microscale level.Notably,the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model.The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in(J Comput Phys 469:111551,2022).To overcome the numerical complexity of the MD microscale model,a deep neural network is employed as an efficient surrogate model.The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions.To our knowledge,such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
文摘Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The stability of liquid film is mainly determined by the characteristics of interfacial wave,which is rarely investigated right now.How to improve the stability of thin film has become a hot spot.In view of this,an advanced model based on the conventional Volume of Fluid(VOF)model is adopted to investigate the characteristics of interfacial wave in gas-liquid flow by using OpenFOAM,and the mechanism of formation and development of wave is revealed intuitively through numerical study.The effects from gas velocity,surface tension and dynamic viscosity of liquid(three factors)on the wave are studied respectively.It can be found that the gas velocity is critical to the formation and development of wave,and four modes of droplets generation are illustrated in this paper.Besides,a gas vortex near the gas-liquid interface can induce formation of wave easily,so changing the gas vortex state can regulate formation and development of wave.What’s more,the change rules of three factors influencing on the interfacial wave are obtained,and the surface tension has a negative effect on the formation and development of wave only when the surface tension coefficient is above the critical value,whereas the dynamic viscosity has a positive effect in this process.Lastly,the maximum height and maximum slope angle of wave will level off as the gas velocity increases.Meanwhile,the maximum slope angle of wave is usually no more than 38°,no matter what happens to the three factors.
基金Sponsored by the National Natural Science Foundation of China (10672080)
文摘The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.
基金Iranian Offshore Oil Company (IOOC) for financial support of this work
文摘Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.