期刊文献+
共找到10,936篇文章
< 1 2 250 >
每页显示 20 50 100
An Optimal Right-Turn Coordination System for Connected and Automated Vehicles at Urban Intersections
1
作者 Mahmudul Hasan Shuji Doman +2 位作者 A.S.M.Bakibillah Md Abdus Samad Kamal Kou Yamada 《Computers, Materials & Continua》 2026年第1期430-446,共17页
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst... Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios. 展开更多
关键词 Right-turn coordination connected and automated vehicles vehicular communication edge processing urban intersection
在线阅读 下载PDF
Sparse pipeline wall information-based data-driven reconstruction for solid–liquid two-phase flow in flexible vibrating pipelines 被引量:1
2
作者 Shengpeng Xiao Chuyi Wan +6 位作者 Hongbo Zhu Dai Zhou Juxi Hu Mengmeng Zhang Yuankun Sun Yan Bao Ke Zhao 《International Journal of Mining Science and Technology》 2025年第11期1885-1903,共19页
Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefor... Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline. 展开更多
关键词 Particles Solid-liquid two-phase flow Vibration Flexible pipelines Deep learning RECONSTRUCTION
在线阅读 下载PDF
Mechanism of the Fluidelastic Instability of a Flexible Tube with a Squeeze Film Within a Rigid Tube Array Subjected to Two-Phase Flow 被引量:1
3
作者 YANG Shi-hao LAI Jiang ZHU Hong-jun 《China Ocean Engineering》 2025年第5期855-865,共11页
The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the th... The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability. 展开更多
关键词 fluidelastic instability tube bundles squeeze film eigenvalue problem two-phase flow
在线阅读 下载PDF
Pore-scale gas–water two-phase flow and relative permeability characteristics of disassociated hydrate reservoir 被引量:1
4
作者 Yu-Xuan Xia Derek Elsworth +3 位作者 Sai Xu Xuan-Zhe Xia Jian-Chao Cai Cheng Lu 《Petroleum Science》 2025年第8期3344-3356,共13页
Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristic... Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development. 展开更多
关键词 Clayey-silt reservoir Gasewater two-phase flow CT scanning Relative permeability Pore network model
原文传递
Dynamic Behavior of a Pipe Conveying a Gas-Liquid Two-Phase Flow Under External Excitations 被引量:1
5
作者 FU Guang-ming WANG Xiao +4 位作者 JIAO Hui-lin WANG Bo-ying SHAN Zheng-feng SUN Bao-jiang SU Jian 《China Ocean Engineering》 2025年第5期822-838,共17页
This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the... This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow. 展开更多
关键词 pipe conveying fluid integral transform two-phase flow external excitations dynamic response forced vibrations
在线阅读 下载PDF
Ultrasound-Guided Hydro Dissection: A Novel Treatment Approach for Intersection Syndrome
6
作者 Yvonne Maura Murphy Dominic Frances O’Shea +1 位作者 Maura Gerardine O’Dea Dominic Colman Harmon 《Pain Studies and Treatment》 2025年第1期8-13,共6页
Background: Wrist pain is prevalent. Activities such as dexterous sports, prolonged use of personal handheld devices, and extensive desktop keyboard usage are common contributors to wrist pain. Intersection syndrome, ... Background: Wrist pain is prevalent. Activities such as dexterous sports, prolonged use of personal handheld devices, and extensive desktop keyboard usage are common contributors to wrist pain. Intersection syndrome, a form of inflammatory tenosynovitis, occurs at the intersection of the first and second dorsal compartments of the wrist. The first dorsal compartment is comprised of the tendons of abductor pollicis longus and extensor pollicis brevis, while the second dorsal compartment contains the tendons of extensor carpi radialis longus and extensor carpi radialis brevis. Intersection syndrome is diagnosed by pain localized to the dorsoradial forearm, approximately five cm proximal to the wrist joint, which worsens with resisted wrist and thumb extension. To date, the use of hydro dissection with 5% dextrose under ultrasound guidance as a treatment for Intersection syndrome has not been reported. This case report presents the first report on ultrasound-guided hydro dissection as a therapeutic approach for intersection syndrome. Methods: A case report, with informed consent, involving a 32-year-old male athlete. The patient, a hurling player, presented with chronic right wrist pain diagnosed as intersection syndrome. The condition significantly affected his work, sporting activities, and daily living activities. Previous conservative management and physiotherapy had failed to alleviate his symptoms. To confirm the diagnosis, relevant imaging was performed, supplemented by dynamic ultrasound assessment. The procedure was performed aseptically. Continuous ultrasound guidance was employed to ensure accurate needle placement. Once the needle tip position was confirmed, an initial injection of 5 mL of 0.25% chirocaine was administered. 10 mL of 5% dextrose was injected under ultrasound guidance for hydro dissection, with good visualization of the solution’s distribution. Conclusion: Ultrasound-guided hydro dissection has not previously been documented as a treatment option for intersection syndrome. In this case, it proved to be an effective pain-relieving therapy with sustained effect at three-month clinical follow-up. Further studies are required. 展开更多
关键词 Wrist Pain intersection Syndrome Sports Injury Hydro Dissection ULTRASOUND
暂未订购
Research of Fly over as a Solution to Congestion of Intersection Junction:Case Study:Jalan Jatingaleh Semarang
7
作者 Rachmat Mudiyono 《Journal of Traffic and Transportation Engineering》 2025年第2期86-95,共10页
In the next few years traffic will happen most of the time.This was triggered by the growing rate of vehicles against the road capacity which is not balance.All the time the congestion in the city of Semarang has occu... In the next few years traffic will happen most of the time.This was triggered by the growing rate of vehicles against the road capacity which is not balance.All the time the congestion in the city of Semarang has occured at peak hours.Congestion also occured in between Teuku Umar and Setia Budi road Jatingaleh because of a plot intersection(Kesatrian intersection,PLN intersection and Jatingaleh intersection)with the Toll Road.Jatingaleh is located in the southern city of Semarang which is a central meeting point between the upper and lower Semarang where the vehicle flows in through a combination of local current and regional traffic,and the flow of vehicles coming in and out from highway.The main cause of the problems that occurred in the area of Jatingaleh is due to the numbers of vehicles movement that occurs at the intersections.With the above issues,it is necessary to analyse the existing conditions and look into some solutions.Before carrying out an analysis a field surveys at peak hours for example morning(06:00 to 08:00 am)and for the afternoon(04:00 to 06:00 pm)should be conducted,then the number of vehicles is counted manually with“short-breakcounting”according to types of vehicles.From the analysis we found that the degree of saturation(DS)is 1.61 between Teuku Umar and Setia Budi road during the morning peak hours and 1.56 during the afternoon peak hours.This means that the capacity of the existing road is no longer able to accommodate the traffic flow.One of the solutions for the congestion that occurs at the intersection of Jatingaleh is to apply the efficiency of the intersection that is not in a plot with a Fly over,Underpass and the combination of Fly Over-Underpass.Base on the flow reduction calculation with 3 comparative modeling it shows that the Fly Over is the most technically efficient to be applied in this research. 展开更多
关键词 CONGESTION intersection and interchange
在线阅读 下载PDF
Reconceptualizing the Everyday in French Literary Fieldwork:Intersections of Buddhism,Daoism and French Literary Practice
8
作者 ZHANG Dan 《Journal of Literature and Art Studies》 2025年第1期44-51,共8页
This article explores the intersections of Buddhism,Daoism,and contemporary French literary practice in the study of the everyday(quotidien).Since the 1980s,French literature has increasingly shifted its focus from th... This article explores the intersections of Buddhism,Daoism,and contemporary French literary practice in the study of the everyday(quotidien).Since the 1980s,French literature has increasingly shifted its focus from the exotic to the mundane,engaging with theoretical frameworks developed by scholars such as Henri Lefebvre and Michel de Certeau.Drawing on Buddhist notions of emptiness and dependent arising,as well as Daoist principles of yin-yang interdependence,the article bridges Eastern and Western philosophies to demonstrate the everyday not as a static or trivial backdrop,but as a dynamic and transformative space.It further examines how representations of daily life in the works of Georges Perec and Jacques Roubaud employ the meticulous documentation of mundane details to uncover hidden patterns,rhythms,and structures of human experience.Through literary fieldwork,Perec and Roubaud challenge conventional perceptions of the everyday,unveiling its depth,complexity,and potential for reinvention. 展开更多
关键词 intersectionS EVERYDAY documentation literary fieldwork reinvention
在线阅读 下载PDF
Dual-scale insights of two-phase flow in inter-cleats based on microfluidics:Interface jumps and energy dissipation
9
作者 Jicheng Zhang Dawei Lv +3 位作者 Jon Jincai Zhang Feng Wang Dawei Yin Haiyang Yu 《International Journal of Mining Science and Technology》 2025年第3期451-465,共15页
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c... Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media. 展开更多
关键词 Inter-cleat MICROFLUIDICS two-phase flow Dual-scale Interface jump Inertial effect
在线阅读 下载PDF
The role of isolators in two-phase kerosene/air rotating detonation engines
10
作者 Wenbo Cao Fang Wang +1 位作者 Chunsheng Weng Huangwei Zhang 《Defence Technology(防务技术)》 2025年第7期260-274,共15页
In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The e... In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine. 展开更多
关键词 Rotating detonation two-phase ISOLATOR Upstream oblique shock wave
暂未订购
Efficient prediction of gaseous n-hexane removal in two-phase partitioning bioreactors with silicone oil based on the mechanism and kinetic models
11
作者 Lichao Lu Tuo Ju +6 位作者 Yangdan Fang Jingtao Hu Zhuqiu Sun Zhuowei Cheng Qian Li Jianmeng Chen Dong-zhi Chen 《Journal of Environmental Sciences》 2025年第8期729-740,共12页
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec... Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation. 展开更多
关键词 Mass transfer N-HEXANE two-phase partitioning bioreactors Silicone oil
原文传递
A Review of Pressure Drop Characteristics and Optimization Measures of Two-Phase Flow with Low Boiling Point Working Fluids in Microchannels
12
作者 Zongyu Jie Chao Dang Qingliang Meng 《Frontiers in Heat and Mass Transfer》 2025年第4期1053-1089,共37页
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan... With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices. 展开更多
关键词 Pressure drop two-phase flow microchannels bubble shape prediction model
在线阅读 下载PDF
Numerical investigation on the engraving process of a pyrotechnic actuator with an improved two-phase flow model of interior ballistic
13
作者 Yue Li Cong Liu +1 位作者 Cheng Cheng Genghui Jiang 《Defence Technology(防务技术)》 2025年第4期120-132,共13页
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput... By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs. 展开更多
关键词 Pyrotechnic actuator Engraving process two-phase flow Pressure oscillation
在线阅读 下载PDF
Exosomes separation with aqueous two-phase systems from bovine milk
14
作者 Jingjing Sun Ruoque Mao +2 位作者 Xiaoqian Fu Shanjing Yao Dongqiang Lin 《Chinese Journal of Chemical Engineering》 2025年第5期1-10,共10页
The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine m... The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes. 展开更多
关键词 Aqueous two-phase extraction Bovine milk exosomes SEPARATION PURIFICATION
在线阅读 下载PDF
Modeling and Experimental Study of an Open Two-Phase Loop Driven by Osmotic Pressure and Capillary Force
15
作者 Hanli Bi Zheng Peng +5 位作者 Chenpeng Liu Zhichao Jia Guoguang Li Yuandong Guo Hongxing Zhang Jianyin Miao 《Frontiers in Heat and Mass Transfer》 2025年第1期55-70,共16页
As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it ... As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop. 展开更多
关键词 Multi-heat sources osmotic pressure two-phase loop dual-drive loop heat pipe
在线阅读 下载PDF
Structural Optimization of Nozzles for Gas-Liquid Two-Phase Jets
16
作者 Fengxia Shi Jian Zhao +3 位作者 Xiaodong Dai Guoxin Zhang Yuan Lu Yuyan Shang 《Fluid Dynamics & Materials Processing》 2025年第12期2963-2980,共18页
Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles,which generates transient microjets and shock waves.The geometry of the nozzle is a decisive fac... Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles,which generates transient microjets and shock waves.The geometry of the nozzle is a decisive factor in controlling jet formation,flow modulation,and impact efficiency.In this work,the structural optimization of gas–liquid two-phase nozzles was investigated numerically using the Volume of Fluid(VOF).Simulation results show that the aero-shaped nozzle delivers a significantly stronger impact on the target surface than conventional geometries.Specifically,its impact pressure is 21%higher than that of a conical straight nozzle and 37%higher than that of a conical nozzle.The aero nozzle not only increases peak impact pressure but also sustains it over a longer duration,leading to an overall improvement in energy transfer efficiency.Parametric analyses further reveal the key geometric conditions governing performance.When the nozzle curvature is set to 0.01,the jet achieves a higher and more stable surface pressure profile,maintaining elevated impact for a prolonged period.At an aspect ratio of 15,the jet exhibits pronounced pulsation under high pressure,thereby enhancing impact intensity.The contraction ratio exerts a non-monotonic influence:as it increases,impact pressure initially rises and subsequently declines,with an optimal value of 4 yielding the highest and most persistent impact pressure.Likewise,when the ratio of inlet length to outlet diameter is 2.5,the jet demonstrates the strongest impact on the target surface. 展开更多
关键词 Gas-liquid two-phase jet impact MODULATION nozzle optimization fluid volume method
在线阅读 下载PDF
Numerical Simulation of Gas-Water Two-Phase Flow in a Proppant-Filled Layer
17
作者 Jian Yang Xinghao Gou +4 位作者 Jiayi Sun Fei Liu Xiaojin Zhou Xu Liu Tao Zhang 《Fluid Dynamics & Materials Processing》 2025年第8期1935-1954,共20页
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me... Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels. 展开更多
关键词 Proppant fractures gas-water two-phase flow numerical simulation lattice Boltzmann method flow behavior
在线阅读 下载PDF
Theoretical study of the light-induced conical intersection in the photodissociation of molecule OH
18
作者 Jinqian Liu Jialong Li +1 位作者 Dongdong Zhang Dajun Ding 《Chinese Physics B》 2025年第10期134-140,共7页
Light-induced conical intersections(LICIs)present a distinctive mechanism for nonadiabatic coupling,thereby facilitating ultrafast chemical reactions,including the indirect photodissociation of diatomic molecules.In c... Light-induced conical intersections(LICIs)present a distinctive mechanism for nonadiabatic coupling,thereby facilitating ultrafast chemical reactions,including the indirect photodissociation of diatomic molecules.In contrast to static conical intersections,LICIs are dynamically tunable,providing a pathway for precise control of molecular dissociation.In this study,we employ the time-dependent quantum wave packet method to investigate the dissociation dynamics of the OH molecule,focusing on its ground state X^(2)Πand repulsive state 1^(2)Σ~-.By varying laser field parameters(intensity,full width at half maximum(FWHM),and wavelength),we elucidate how nonadiabatic coupling governs selective dissociation channel control.Our findings reveal that the choice of initial vibrational states and the tailoring of laser conditions significantly influence dissociation pathways,providing theoretical insights into manipulating molecular dynamics via LICIs.These results provide a foundation for future experimental studies and the development of advanced molecular control techniques. 展开更多
关键词 light-induced conical intersection indirect photodissociation time-dependent quantum wave packet method
原文传递
A layer-specific constraint-based enriched physics-informed neural network for solving two-phase flow problems in heterogeneous porous media
19
作者 Jing-Qi Lin Xia Yan +4 位作者 Er-Zhen Wang Qi Zhang Kai Zhang Pi-Yang Liu Li-Ming Zhang 《Petroleum Science》 2025年第11期4714-4735,共22页
In this study,we propose a constraint learning strategy based on interpretability analysis to improve the convergence and accuracy of the enriched physics-informed neural network(EPINN),which is applied to simulate tw... In this study,we propose a constraint learning strategy based on interpretability analysis to improve the convergence and accuracy of the enriched physics-informed neural network(EPINN),which is applied to simulate two-phase flow in heterogeneous porous media.Specifically,we first analyze the layerwise outputs of EPINN,and identify the distinct functions across layers,including dimensionality adjustment,pointwise construction of non-equilibrium potential,extraction of high-level features,and the establishment of long-range dependencies.Then,inspired by these distinct modules,we propose a novel constraint learning strategy based on regularization approaches,which improves neural network(NN)learning through layer-specific differentiated updates to enhance cross-timestep generalization.Since different neu ral network layers exhibit varying sensitivities to global generalization and local regression,we decrease the update frequency of layers more sensitive to local learning under this constraint learning strategy.In other words,the entire neural network is encouraged to extract more generalized features.The superior performance of the proposed learning strategy is validated through evaluations on numerical examples with varying computational complexities.Post hoc analysis reveals that gradie nt propagation exhibits more pronounced staged characte ristics,and the partial differential equation(PDE)residuals are more uniformly distributed under the constraint guidance.Interpretability analysis of the adaptive constraint process suggests that maintaining a stable information compression mode facilitates progressive convergence acceleration. 展开更多
关键词 Physics-informed learning Explainable artificial intelligence Constraint learning two-phase flow Heterogeneous porous media
原文传递
Influence of Fractal Dimension on Gas-Driven Two-Phase Flow in Fractal Porous Media:A VOF Model-Based Simulation
20
作者 Xiaolin Wang Richeng Liu +3 位作者 Kai Qiu Zhongzhong Liu Shisen Zhao Shuchen Li 《Computer Modeling in Engineering & Sciences》 2025年第7期289-307,共19页
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe... Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution. 展开更多
关键词 Fractal porous media gas-liquid two-phase flow fractal dimension vortex evolution VOF model displacement efficiency
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部