Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th...Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.展开更多
Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In...Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined.展开更多
Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtain...Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtained gray-scale time series is decomposed by the Empirical Mode Decomposition (EMD) method, the various scales of the signals are processed by Hurst exponent method, and then the dual-fractal characteristics are obtained. The scattered bubble and the bubble cluster theories are applied to the evolution analysis of two-phase flow patterns. At the same time the various signals are checked in the chaotic recursion chart by which the two typical characteristics (diagonal average length and Shannon entropy) are obtained. Resulting term of these properties, the dynamic characteristics of gas-liquid two-phase flow patterns are quantitatively analyzed. The results show that the evolution paths of gas-liquid two-phase flow patterns can be well characterized by the integrated analysis on the basis of the gray-scale time series of flowing images from EMD, Hurst exponents and Recurrence Plot (RP). In the middle frequency section (2nd, 3rd, 4th scales), three flow patterns decomposed by the EMD exhibit dual fractal characteristics which represent the dynamic features of bubble cluster, single bubble, slug bubble and scattered bubble. According to the change of diagonal average lengths and recursive Shannon entropy characteristic value, the structure deterministic of the slug flow is better than the other two patterns. After the decomposition by EMD the slug flow and the mist flow in the high frequency section have obvious peaks. Anyway, it is an effective way to understand and characterize the dynamic characteristics of two-phase flow patterns using the multi-scale non-linear analysis method based on image gray-scale fluctuation signals.展开更多
A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid...A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed.展开更多
Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefor...Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline.展开更多
The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the th...The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability.展开更多
This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the...This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow.展开更多
Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristic...Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.展开更多
Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1,60 mm, The working liquid was t...Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1,60 mm, The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas.展开更多
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me...Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan...With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.展开更多
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ...The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.展开更多
This paper presents a new set of experimental data of air-water flow patterns in a channel with a cross-section of 1×1 mm2. The ranges of the gas and liquid superficial velocities are 0.1-10 m/s and 0.2~7 m/s, re...This paper presents a new set of experimental data of air-water flow patterns in a channel with a cross-section of 1×1 mm2. The ranges of the gas and liquid superficial velocities are 0.1-10 m/s and 0.2~7 m/s, respectively. Bubble, bubble-slug, slug, and frothy flows are observed. The present data are compared with other data in mini-channels reported in literature, and also compared with those in normal channel at microgravity, in which the Bond number has the same order of magnitude. The slug-frothy boundary is in consistent with each other, but for the bubble-slug transition, a much smaller value for the transition quality in the drift-flux model is obtained in the present study than those predicted by the empirical relations for the case of microgravity. It’s shown that the mini-scale modeling may not be an effective way to anticipate the bubble-slug transition of two-phase flow at microgravity.展开更多
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffecti...In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.展开更多
The challenge of wide brine source and its additional problems come from the economy(energy consumption and other costs),security(re-dissolution of surrounding salt rocks),and environment(groundwater pollution by brin...The challenge of wide brine source and its additional problems come from the economy(energy consumption and other costs),security(re-dissolution of surrounding salt rocks),and environment(groundwater pollution by brine)of salt cavern oil storage are worth examining to improve the efficiency of oil storage.Against this background,this work presented an operating mode of salt cavern oil and gas co-storage and using natural gas displacement for petroleum recovery.A gas-oil two-phase flow model with gas dissolution and exsolution was proposed to evaluate the application prospects of the new method precisely.Numerical studies indicated that the gas void fraction at the wellhead under quasi-steady state conditions is approximately 0.153,which belongs to bubbly flow,and the pressure at the wellhead of the central tube increased from 5.54 to 6.12 MPa during the entire transient flow stage,with an increase of 10.47%.Compared to the traditional method of using brine as the working fluid,the pump pressure rises from 2.92 to 14.01 MPa.However,if the new mode can be linked with the salt cavern gas storage and when the initial wellhead gas pressure exceeds 13 MPa,the energy consumption of the new method will be lower than that of the traditional brine-based operational mode.A new empirical formula is proposed to determine the two-phase flow pattern under different operating parameters.A special focus was given to energy consumption for oil recovery,which grows roughly in accordance with the operating pressure and oil recovery rate.However,the energy cost per volume of crude oil remains almost unchanged.This work provided a new solution for the serious brine problem and is expected to achieve petroleum recovery through natural gas displacement.展开更多
In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase dra...In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase drag forces highly challenging in numerical simulations.To achieve precise prediction of the drag forces on irregular bubbles within multiphase pumps,this study modifies the existing bubble drag force model and applies the revised model to the prediction of gas-liquid two-phase flow within multiphase pumps.The research findings indicate that the modified drag force model significantly enhances the accuracy of predicting flow characteristics within the pump,particularly under high gas volume fraction conditions.The simulation results for gas phase distribution and vorticity exhibit strong agreement with experimental data.The modified drag model better captures the accumulation of the gas phase at the suction side of the impeller outlet.It also accurately predicts the vortex characteristics induced by bubble backflow from the trailing edges of the diffuser.Additionally,the adjustment of the drag coefficient enhances the model’s ability to represent local flow field characteristics,thereby optimizing the performance simulation methods of multiphase pumps.Compared to traditional drag force models,the modified model reduces prediction errors in head and efficiency by 36.4%and 27.5%,respectively.These results provide important theoretical foundations and model support for improving the accuracy of gas-liquid two-phase flow simulations and optimizing the design of multiphase pumps under high gas volume fraction conditions.展开更多
The flow focusing nozzle is a new type of nozzle that performs effective atomization of the discrete phase by means of high-speed motion of the continuous phase.The flow pattern and its morphological changes have a si...The flow focusing nozzle is a new type of nozzle that performs effective atomization of the discrete phase by means of high-speed motion of the continuous phase.The flow pattern and its morphological changes have a significant effect on the atomization, but the influence of different parameters on the morphological change of the flow pattern remains unclear.The flow focusing pattern and morphological changes in the two-phase flow inside the nozzle were simulated numerically, based on the volume of fluid method.The results demonstrate that the ratio of the nozzle-to-capillary distance and capillary diameter, the gas–liquid velocity ratio, and capillary diameter have significant effects on the flow pattern.When the ratio of the nozzle-to-capillary distance H and capillary diameter D increases, or the capillary diameter D increases, the flow pattern tends to transform into a laminar form; however, when the gas–liquid velocity ratio V increases, the flow pattern tends to transform into a turbulence form.Furthermore, we define the cone-shaped expansion rate, cone-shaped focusing rate,and cone angle in order to study the morphological changes in the cone shape inside the nozzle.The results indicate that the morphological change of the cone shape and flow pattern transformation is interrelated.When the cone shape tends to be unstable, the flow pattern changes towards flow blurring, whereas, a stable cone indicates that the flow tends to exhibit a droplet pattern.展开更多
基金Projects(61227006,61473206) supported by the National Natural Science Foundation of ChinaProject(13TXSYJC40200) supported by Science and Technology Innovation of Tianjin,China
文摘Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
基金The project supported by the Canadian Space Agency (CSA) and the visiting scholar program of the Chinese Academy of Sciences (CAS)
文摘Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined.
基金Supported by the National Natural Science Foundation of China (50976018) the Natural Science Foundation of JilinProvince (20101562)
文摘Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtained gray-scale time series is decomposed by the Empirical Mode Decomposition (EMD) method, the various scales of the signals are processed by Hurst exponent method, and then the dual-fractal characteristics are obtained. The scattered bubble and the bubble cluster theories are applied to the evolution analysis of two-phase flow patterns. At the same time the various signals are checked in the chaotic recursion chart by which the two typical characteristics (diagonal average length and Shannon entropy) are obtained. Resulting term of these properties, the dynamic characteristics of gas-liquid two-phase flow patterns are quantitatively analyzed. The results show that the evolution paths of gas-liquid two-phase flow patterns can be well characterized by the integrated analysis on the basis of the gray-scale time series of flowing images from EMD, Hurst exponents and Recurrence Plot (RP). In the middle frequency section (2nd, 3rd, 4th scales), three flow patterns decomposed by the EMD exhibit dual fractal characteristics which represent the dynamic features of bubble cluster, single bubble, slug bubble and scattered bubble. According to the change of diagonal average lengths and recursive Shannon entropy characteristic value, the structure deterministic of the slug flow is better than the other two patterns. After the decomposition by EMD the slug flow and the mist flow in the high frequency section have obvious peaks. Anyway, it is an effective way to understand and characterize the dynamic characteristics of two-phase flow patterns using the multi-scale non-linear analysis method based on image gray-scale fluctuation signals.
基金The project supported by the National Natural Science Foundation of China (19789201)the Ministry of Science and Technology of China (95-Yu-34)The Post-doctoral Science Foundation of China
文摘A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed.
基金financial support by the National Natural Science Foundation of China (Nos.52471293 and 12372270)the National Youth Science Foundation of China (Nos.52101322 and 52108375)+3 种基金the Program for Intergovernmental International S&T Cooperation Projects of Shanghai Municipality, China (Nos.24510711100 and 22160710200)The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (No.SL2022PT101)funded by the Open Fund of the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology (No.LP2415)National Key R&D Program of China (No.2023YFC2811600)
文摘Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline.
基金financially supported by the National Natural Science Foundation of China(Grant No.12072336).
文摘The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability.
基金financially supported by the Key Research and Development Program of Shandong Province(Grant Nos.2022CXGC020405,2023CXGC010415 and 2025TSGCCZZB0238)the National Natural Science Foundation of China(Grant No.52171288)the financial support from CNPq,FAPERJ,ANP,Embrapii,and China National Petroleum Corporation(CNPC).
文摘This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow.
基金the National Natural Science Foundation of China (Nos. 42302143, 42172159)China Geological Survey Project (No. DD20211350)support from the G. Albert Shoemaker endowment
文摘Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.
基金supported by Key foundational research project of Science and Technology Bureau of Shanghai (Grant No. 04JC14049).
文摘Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1,60 mm, The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas.
文摘Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金supported by the Beijing Municipal Science&Technology Commission(Z231100006123010).
文摘With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.
基金Project(51574045)supported by the National Nature Science Foundation of China
文摘The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.
文摘This paper presents a new set of experimental data of air-water flow patterns in a channel with a cross-section of 1×1 mm2. The ranges of the gas and liquid superficial velocities are 0.1-10 m/s and 0.2~7 m/s, respectively. Bubble, bubble-slug, slug, and frothy flows are observed. The present data are compared with other data in mini-channels reported in literature, and also compared with those in normal channel at microgravity, in which the Bond number has the same order of magnitude. The slug-frothy boundary is in consistent with each other, but for the bubble-slug transition, a much smaller value for the transition quality in the drift-flux model is obtained in the present study than those predicted by the empirical relations for the case of microgravity. It’s shown that the mini-scale modeling may not be an effective way to anticipate the bubble-slug transition of two-phase flow at microgravity.
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
文摘In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.
基金The financial support from the National Science and Technology Major Project,China(No.2024ZD1004107)the Natural Science Foundation of Wuhan(No.2024040701010062)is greatly appreciated。
文摘The challenge of wide brine source and its additional problems come from the economy(energy consumption and other costs),security(re-dissolution of surrounding salt rocks),and environment(groundwater pollution by brine)of salt cavern oil storage are worth examining to improve the efficiency of oil storage.Against this background,this work presented an operating mode of salt cavern oil and gas co-storage and using natural gas displacement for petroleum recovery.A gas-oil two-phase flow model with gas dissolution and exsolution was proposed to evaluate the application prospects of the new method precisely.Numerical studies indicated that the gas void fraction at the wellhead under quasi-steady state conditions is approximately 0.153,which belongs to bubbly flow,and the pressure at the wellhead of the central tube increased from 5.54 to 6.12 MPa during the entire transient flow stage,with an increase of 10.47%.Compared to the traditional method of using brine as the working fluid,the pump pressure rises from 2.92 to 14.01 MPa.However,if the new mode can be linked with the salt cavern gas storage and when the initial wellhead gas pressure exceeds 13 MPa,the energy consumption of the new method will be lower than that of the traditional brine-based operational mode.A new empirical formula is proposed to determine the two-phase flow pattern under different operating parameters.A special focus was given to energy consumption for oil recovery,which grows roughly in accordance with the operating pressure and oil recovery rate.However,the energy cost per volume of crude oil remains almost unchanged.This work provided a new solution for the serious brine problem and is expected to achieve petroleum recovery through natural gas displacement.
基金funded by Sichuan Natural Science Foundation Outstanding Youth Science Foundation(No.2024NSFJQ0012)Key project of Regional Innovation and Development Joint Fund of National Natural Science Foundation(No.U23A20669)Sichuan Science and Technology Program(2022ZDZX0041).
文摘In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase drag forces highly challenging in numerical simulations.To achieve precise prediction of the drag forces on irregular bubbles within multiphase pumps,this study modifies the existing bubble drag force model and applies the revised model to the prediction of gas-liquid two-phase flow within multiphase pumps.The research findings indicate that the modified drag force model significantly enhances the accuracy of predicting flow characteristics within the pump,particularly under high gas volume fraction conditions.The simulation results for gas phase distribution and vorticity exhibit strong agreement with experimental data.The modified drag model better captures the accumulation of the gas phase at the suction side of the impeller outlet.It also accurately predicts the vortex characteristics induced by bubble backflow from the trailing edges of the diffuser.Additionally,the adjustment of the drag coefficient enhances the model’s ability to represent local flow field characteristics,thereby optimizing the performance simulation methods of multiphase pumps.Compared to traditional drag force models,the modified model reduces prediction errors in head and efficiency by 36.4%and 27.5%,respectively.These results provide important theoretical foundations and model support for improving the accuracy of gas-liquid two-phase flow simulations and optimizing the design of multiphase pumps under high gas volume fraction conditions.
基金Supported by the National Natural Science Foundation of China(51776016,51606006)Beijing Natural Science Foundation(3172025,3182030)+2 种基金National Key Research and Development Program(2017YFB0103401)National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2017A10)the Talents Foundation of Beijing Jiaotong University(2018RC017)
文摘The flow focusing nozzle is a new type of nozzle that performs effective atomization of the discrete phase by means of high-speed motion of the continuous phase.The flow pattern and its morphological changes have a significant effect on the atomization, but the influence of different parameters on the morphological change of the flow pattern remains unclear.The flow focusing pattern and morphological changes in the two-phase flow inside the nozzle were simulated numerically, based on the volume of fluid method.The results demonstrate that the ratio of the nozzle-to-capillary distance and capillary diameter, the gas–liquid velocity ratio, and capillary diameter have significant effects on the flow pattern.When the ratio of the nozzle-to-capillary distance H and capillary diameter D increases, or the capillary diameter D increases, the flow pattern tends to transform into a laminar form; however, when the gas–liquid velocity ratio V increases, the flow pattern tends to transform into a turbulence form.Furthermore, we define the cone-shaped expansion rate, cone-shaped focusing rate,and cone angle in order to study the morphological changes in the cone shape inside the nozzle.The results indicate that the morphological change of the cone shape and flow pattern transformation is interrelated.When the cone shape tends to be unstable, the flow pattern changes towards flow blurring, whereas, a stable cone indicates that the flow tends to exhibit a droplet pattern.