Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th...Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.展开更多
Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In...Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined.展开更多
Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtain...Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtained gray-scale time series is decomposed by the Empirical Mode Decomposition (EMD) method, the various scales of the signals are processed by Hurst exponent method, and then the dual-fractal characteristics are obtained. The scattered bubble and the bubble cluster theories are applied to the evolution analysis of two-phase flow patterns. At the same time the various signals are checked in the chaotic recursion chart by which the two typical characteristics (diagonal average length and Shannon entropy) are obtained. Resulting term of these properties, the dynamic characteristics of gas-liquid two-phase flow patterns are quantitatively analyzed. The results show that the evolution paths of gas-liquid two-phase flow patterns can be well characterized by the integrated analysis on the basis of the gray-scale time series of flowing images from EMD, Hurst exponents and Recurrence Plot (RP). In the middle frequency section (2nd, 3rd, 4th scales), three flow patterns decomposed by the EMD exhibit dual fractal characteristics which represent the dynamic features of bubble cluster, single bubble, slug bubble and scattered bubble. According to the change of diagonal average lengths and recursive Shannon entropy characteristic value, the structure deterministic of the slug flow is better than the other two patterns. After the decomposition by EMD the slug flow and the mist flow in the high frequency section have obvious peaks. Anyway, it is an effective way to understand and characterize the dynamic characteristics of two-phase flow patterns using the multi-scale non-linear analysis method based on image gray-scale fluctuation signals.展开更多
A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid...A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed.展开更多
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me...Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan...With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.展开更多
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristic...Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.展开更多
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffecti...In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.展开更多
Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typica...Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.展开更多
Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The sta...Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The stability of liquid film is mainly determined by the characteristics of interfacial wave,which is rarely investigated right now.How to improve the stability of thin film has become a hot spot.In view of this,an advanced model based on the conventional Volume of Fluid(VOF)model is adopted to investigate the characteristics of interfacial wave in gas-liquid flow by using OpenFOAM,and the mechanism of formation and development of wave is revealed intuitively through numerical study.The effects from gas velocity,surface tension and dynamic viscosity of liquid(three factors)on the wave are studied respectively.It can be found that the gas velocity is critical to the formation and development of wave,and four modes of droplets generation are illustrated in this paper.Besides,a gas vortex near the gas-liquid interface can induce formation of wave easily,so changing the gas vortex state can regulate formation and development of wave.What’s more,the change rules of three factors influencing on the interfacial wave are obtained,and the surface tension has a negative effect on the formation and development of wave only when the surface tension coefficient is above the critical value,whereas the dynamic viscosity has a positive effect in this process.Lastly,the maximum height and maximum slope angle of wave will level off as the gas velocity increases.Meanwhile,the maximum slope angle of wave is usually no more than 38°,no matter what happens to the three factors.展开更多
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat...Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.展开更多
During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optim...During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.展开更多
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer...Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model.展开更多
As lithium-ion batteries(LIBs)continue to evolve toward lower costs and higher energy densities,their potential safety risks have become increasingly apparent.Incidents such as explosions at energy storage facilities,...As lithium-ion batteries(LIBs)continue to evolve toward lower costs and higher energy densities,their potential safety risks have become increasingly apparent.Incidents such as explosions at energy storage facilities,fires in electric vehicles,and building fires ignited by charging two-wheeled vehicles have been occurring with alarming frequency,often resulting in significant casualties and injuries.Conducting indepth investigations into thermal runaway(TR)incidents in LIBs can significantly reduce the risk of future occurrences.However,current investigations into LIB fire and explosion incidents face challenges due to the difficulty of conducting in-depth analyses and the lack of a robust theoretical framework to guide these investigations.To enhance the effectiveness of in-depth investigations into battery fire and explosion incidents and to address the lack of theoretical guidance,this paper is the first to systematically examine the conservation and flow patterns of elements during the TR process of LIBs.The analysis reveals that during TR,the gas products generated include approximately 1.5 g of H_(2),23.6 g of CO,88.4 g of CO_(2),8.9 g of C_(2)H_(4),7.3 g of CH_(4),3.7 g of C_(2)H_(6),and 82 g of electrolyte vapor.After TR,the solid compounds formed consist of approximately 2.5 g of LiF,29–92.2 g of elemental Ni/Co/Mn,11.4 g of Li_(2)CO_(3),200.6 g of graphite,1.4 g of NiO,29.6 g of MnO,30.1 g of CoO,67 g of elemental Cu,0.03 g of LiNiO_(2),and 4.3 g of LiAlO_(2).Importantly,the energy released from reactions forming solid compounds during TR surpasses that from gas-forming reactions.This investigation represents the first application of Hess’s law to verify the conservation of elements during the TR process of lithium-ion batteries.The proposed methodology is also applicable to other types of energy storage batteries,effectively advancing techniques for comprehensively investigating lithium battery fire and explosion incidents.展开更多
Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle ...Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle model rely on solving implicit transcendental equations, which require iterative numerical root-finding methods,thereby introducing computational complexity and inefficiency. This paper proposes the high-precision explicit approximate solutions for the two models, directly correlating the geometric parameters with the flow parameters, thus significantly enhancing the efficiency and accuracy of two-phase flow analysis.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
基金Projects(61227006,61473206) supported by the National Natural Science Foundation of ChinaProject(13TXSYJC40200) supported by Science and Technology Innovation of Tianjin,China
文摘Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
基金The project supported by the Canadian Space Agency (CSA) and the visiting scholar program of the Chinese Academy of Sciences (CAS)
文摘Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined.
基金Supported by the National Natural Science Foundation of China (50976018) the Natural Science Foundation of JilinProvince (20101562)
文摘Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtained gray-scale time series is decomposed by the Empirical Mode Decomposition (EMD) method, the various scales of the signals are processed by Hurst exponent method, and then the dual-fractal characteristics are obtained. The scattered bubble and the bubble cluster theories are applied to the evolution analysis of two-phase flow patterns. At the same time the various signals are checked in the chaotic recursion chart by which the two typical characteristics (diagonal average length and Shannon entropy) are obtained. Resulting term of these properties, the dynamic characteristics of gas-liquid two-phase flow patterns are quantitatively analyzed. The results show that the evolution paths of gas-liquid two-phase flow patterns can be well characterized by the integrated analysis on the basis of the gray-scale time series of flowing images from EMD, Hurst exponents and Recurrence Plot (RP). In the middle frequency section (2nd, 3rd, 4th scales), three flow patterns decomposed by the EMD exhibit dual fractal characteristics which represent the dynamic features of bubble cluster, single bubble, slug bubble and scattered bubble. According to the change of diagonal average lengths and recursive Shannon entropy characteristic value, the structure deterministic of the slug flow is better than the other two patterns. After the decomposition by EMD the slug flow and the mist flow in the high frequency section have obvious peaks. Anyway, it is an effective way to understand and characterize the dynamic characteristics of two-phase flow patterns using the multi-scale non-linear analysis method based on image gray-scale fluctuation signals.
基金The project supported by the National Natural Science Foundation of China (19789201)the Ministry of Science and Technology of China (95-Yu-34)The Post-doctoral Science Foundation of China
文摘A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed.
文摘Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金supported by the Beijing Municipal Science&Technology Commission(Z231100006123010).
文摘With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.
基金the National Natural Science Foundation of China (Nos. 42302143, 42172159)China Geological Survey Project (No. DD20211350)support from the G. Albert Shoemaker endowment
文摘Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
文摘In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.
基金supported by the National Natural Science Foundation of China Joint Fund Project (Grant/Award Number: U20B6003)National Natural Science Foundation of China (Grant/Award Number: 52304054)。
文摘Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.
文摘Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The stability of liquid film is mainly determined by the characteristics of interfacial wave,which is rarely investigated right now.How to improve the stability of thin film has become a hot spot.In view of this,an advanced model based on the conventional Volume of Fluid(VOF)model is adopted to investigate the characteristics of interfacial wave in gas-liquid flow by using OpenFOAM,and the mechanism of formation and development of wave is revealed intuitively through numerical study.The effects from gas velocity,surface tension and dynamic viscosity of liquid(three factors)on the wave are studied respectively.It can be found that the gas velocity is critical to the formation and development of wave,and four modes of droplets generation are illustrated in this paper.Besides,a gas vortex near the gas-liquid interface can induce formation of wave easily,so changing the gas vortex state can regulate formation and development of wave.What’s more,the change rules of three factors influencing on the interfacial wave are obtained,and the surface tension has a negative effect on the formation and development of wave only when the surface tension coefficient is above the critical value,whereas the dynamic viscosity has a positive effect in this process.Lastly,the maximum height and maximum slope angle of wave will level off as the gas velocity increases.Meanwhile,the maximum slope angle of wave is usually no more than 38°,no matter what happens to the three factors.
基金the National Natural Science Foundation of China(No.51779143)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2020ZD101)the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(No.19X100040072)。
文摘Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.
基金sponsored by the National Natural Science Foundation of China(Nos.52174002&52204008)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2022E020).
文摘During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.
基金supported by the National Natural Science Foundation of China(52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(BYESS2023262)。
文摘Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model.
基金supported by the National Natural Science Foundation of China(52106284,52422609)the Natural Science Foundation of Hebei Province(B2021507001)Key Research Special Project of CPPU(ZDZX202501)。
文摘As lithium-ion batteries(LIBs)continue to evolve toward lower costs and higher energy densities,their potential safety risks have become increasingly apparent.Incidents such as explosions at energy storage facilities,fires in electric vehicles,and building fires ignited by charging two-wheeled vehicles have been occurring with alarming frequency,often resulting in significant casualties and injuries.Conducting indepth investigations into thermal runaway(TR)incidents in LIBs can significantly reduce the risk of future occurrences.However,current investigations into LIB fire and explosion incidents face challenges due to the difficulty of conducting in-depth analyses and the lack of a robust theoretical framework to guide these investigations.To enhance the effectiveness of in-depth investigations into battery fire and explosion incidents and to address the lack of theoretical guidance,this paper is the first to systematically examine the conservation and flow patterns of elements during the TR process of LIBs.The analysis reveals that during TR,the gas products generated include approximately 1.5 g of H_(2),23.6 g of CO,88.4 g of CO_(2),8.9 g of C_(2)H_(4),7.3 g of CH_(4),3.7 g of C_(2)H_(6),and 82 g of electrolyte vapor.After TR,the solid compounds formed consist of approximately 2.5 g of LiF,29–92.2 g of elemental Ni/Co/Mn,11.4 g of Li_(2)CO_(3),200.6 g of graphite,1.4 g of NiO,29.6 g of MnO,30.1 g of CoO,67 g of elemental Cu,0.03 g of LiNiO_(2),and 4.3 g of LiAlO_(2).Importantly,the energy released from reactions forming solid compounds during TR surpasses that from gas-forming reactions.This investigation represents the first application of Hess’s law to verify the conservation of elements during the TR process of lithium-ion batteries.The proposed methodology is also applicable to other types of energy storage batteries,effectively advancing techniques for comprehensively investigating lithium battery fire and explosion incidents.
基金supported by the General Research Fund from the Research Grants Council of the Hong Kong Special Administrative Region of China (No. PolyU 15210624)。
文摘Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle model rely on solving implicit transcendental equations, which require iterative numerical root-finding methods,thereby introducing computational complexity and inefficiency. This paper proposes the high-precision explicit approximate solutions for the two models, directly correlating the geometric parameters with the flow parameters, thus significantly enhancing the efficiency and accuracy of two-phase flow analysis.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.