Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual wo...Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.展开更多
In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)meth...In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)method is applied to solve the governing vibration equation derived based on Euler–Bernoulli beam theory subject to the elastic foundation and boundary conditions.As a result,a general set of second-order ordinary differential equations emerges,and by appropriately setting the stiffness of the end springs,one can easily study the dynamics of various systems with classical or non-classical bound-ary conditions.The numerical simulations are conducted to study the pipe instability performance with respect to various boundary conditions,elastic support parameters,elastic foundation parameters and fluid mass ratios.The numerical model is validated by comparison with published data.It is found that the elastic support boundary conditions have significant effects on the stability of pipe resting on elas-tic foundation.The pipe stability performance is very sensitive to the two elastic foundation parameters.Larger fluid mass ratio enhances the pipe flutter stability performance but has no effects on the diver-gence.展开更多
The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles...The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles due to the increase in loads on the structures,or the recovery of the foundation mass by injection,which is carried out when voids form between the ground and the wooden foundation elements.The high cost of foundation reinforcement methods led the National Agency for the Development of Tourist Heritage in Benin(ANPT)to replace the wooden foundation piles with reinforced concrete piles in the implementation of the project“reinventing the lakeside city of Ganvié”.This article presents an artisanal technology for the creation of reinforced concrete foundation piles in a lake environment.On-site examples made it possible to evaluate the performance of this artisanal implementation technique.The installation of these piles is carried out following manual drilling,followed by the installation of reinforcement and the pouring of concrete on site.The implementation of reinforced concrete foundation piles in place of the wooden ones studied in this article only impacted the infrastructure of the homes of the lakeside town of Ganviébut not the superstructure,which preserved the old traditional wooden architecture and thatched roofs.Thus,the ambition to move this city of Ganviéfrom the stage of a lake village to that of a floating city is very successful.This will contribute to improving the environment and living conditions of the populations and will promote economic development through tourism.展开更多
On April 26,the China Foundation for Peace and Development(CFPD),in collaboration with the Shenzhen Foundation for International Exchange and Cooperation(SFIEC),the Shenzhen Ye Chenghai Charity Foundation and the Chin...On April 26,the China Foundation for Peace and Development(CFPD),in collaboration with the Shenzhen Foundation for International Exchange and Cooperation(SFIEC),the Shenzhen Ye Chenghai Charity Foundation and the China-Myanmar Economic Cooperation and Development Promotion Association(Myanmar),held a handover ceremony at Yangon Airport to donate five tons of medicine to the disasterstricken areas of Myanmar.展开更多
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ...The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.展开更多
Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from H...Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from Hebei Province in China,Hu arrived in Singapore in 1994 as one of the first technical professionals dispatched by China.Since then,he has built a life and career firmly rooted in Singapore.Over more than four years at China Construction(South Pacific)Development Co Pte Ltd,he rose through the ranks from project engineer to site manager and eventually project director.In 1999,he left the company to start his own business,setting up a construction firm with several partners.His focus shifted to real estate in 2007,when he co-founded JVA Venture Pte Ltd.展开更多
Establish an efficacy evaluation method for foundation products in vivo and vitro.The hiding power,whiteness,waterproof and anti-sweat effect were evaluated in vitro test,where CR ratio,Individual Type Angle (ITA°...Establish an efficacy evaluation method for foundation products in vivo and vitro.The hiding power,whiteness,waterproof and anti-sweat effect were evaluated in vitro test,where CR ratio,Individual Type Angle (ITA°) and chromatic aberration (E) were measured as evaluation indicators by standard black/white cardboard,artificial leather and artificial sweat.In clinical assessment,the anti-stain,waterproof,anti-sweat effect of the foundation products were evaluated through the ΔE change,before and after the treatment of products by staining,wetting,sweating in forearm skin.There were significant differences in CR ratio of different types of samples on standard black and white cardboards (P<0.05),ITA° of artificial leather has a significant increase after treatment (P<0.05),?E﹤1.5 in black cloth after dipping test,while ΔE﹤1.5 in leather after water and artificial sweat treatment.Clinical assessment showed that ?E ﹤50%,which had no significant difference in human skin color,before and after the test (P>0.05).The change trend of efficacy evaluation in vitro test was basically consistent with that of visual evaluation and clinical assessment,indicated that the efficacy evaluation methods of foundation products in vivo and vitro are intuitive,quantifiable,and can be used to evaluate the efficacy of foundation products.展开更多
Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research fun...Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.展开更多
For the development of an integrated rounded rectangular wellhead platform with a bucket foundation,a model test was conducted to study the towing motion response of such a structure under still water and wave conditi...For the development of an integrated rounded rectangular wellhead platform with a bucket foundation,a model test was conducted to study the towing motion response of such a structure under still water and wave conditions.The influence of various factors on the floating stability of the structure was investigated through alterations of the towing conditions(draft,towing point position,and wave conditions),and the related influencing mechanism was analyzed.Comparison and analysis were performed to determine the changes in the structure motion pattern and various effects of towing conditions on the structure during towing in still water and regular waves.Moreover,the influence of each factor on the structure’s motion response during towing was analyzed using the Apriori algorithm.In addition,for the simulation of the towing process under actual sea conditions,a towing test was performed under irregular waves,and the stability of towing in irregular waves was compared with that in regular waves.展开更多
This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential oper...This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator(PDDO).It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates.The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory.Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO.The results of the current method are validated through comparison with existing literature.The effects of geometric parameters,material properties,elastic foundation,porosity distribution,and boundary conditions on the frequency are investigated and discussed in detail.The highest fundamental dimensionless frequency occurs under SCSC boundary conditions,while the lowest is under SFSF boundary conditions.The porous FG plate with the fourth pore type,featuring high density of porosity at the top and low at the bottom,exhibits the highest fundamental frequency under SSSS,SFSF,and SCSC boundary conditions.The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.展开更多
As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highr...As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highrise buildings,the deep foundation pit support provides the necessary stability for the foundation structure of the building project,and more effectively guarantees the quality of the project.Through the reasonable supporting structure,the deep foundation pit technology can effectively prevent the risk of soil collapse,foundation pit deformation and other risks,and improve the safety factor of the whole construction project.Especially in the high-rise buildings,the deep foundation pit support technology can consolidate the foundation for the long-term stability of the project,and significantly prolong the service life of the building.The continuous development of deep foundation pit construction technology is the inevitable demand of high-rise building construction,and also provides a powerful help for the development of civil engineering industry.Based on this,this paper focuses on the application of deep foundation pit construction technology in civil engineering construction.展开更多
Foundation models(FMs)have rapidly evolved and have achieved signicant accomplishments in computer vision tasks.Specically,the prompt mechanism conveniently allows users to integrate image prior information into the m...Foundation models(FMs)have rapidly evolved and have achieved signicant accomplishments in computer vision tasks.Specically,the prompt mechanism conveniently allows users to integrate image prior information into the model,making it possible to apply models without any training.Therefore,we proposed a workflow based on foundation models and zero training to solve the tasks of photoacoustic(PA)image processing.We employed the Segment Anything Model(SAM)by setting simple prompts and integrating the model's outputs with prior knowledge of the imaged objects to accomplish various tasks,including:(1)removing the skin signal in three-dimensional PA image rendering;(2)dual speed-of-sound reconstruction,and(3)segmentation ofnger blood vessels.Through these demonstrations,we have concluded that FMs can be directly applied in PA imaging without the requirement for network design and training.This potentially allows for a hands-on,convenient approach to achieving efficient and accurate segmentation of PA images.This paper serves as a comprehensive tutorial,facilitating the mastery of the technique through the provision of code and sample datasets.展开更多
The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation...The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems.展开更多
The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil...The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil foundations can prolong the structure's natural vibration period and enhance its seismic response.We develops a soilstructure interaction system model and a comparative rigid foundation model using the finite element software LS-DYNA to investigate the impact of SSI on the dynamic characteristics and seismic response of stone structures.The results indicate that the SSI effect alters stone structures'dynamic properties and seismic response.This alteration is evident in the extended natural vibration period,which reduces overall stiffness,increases interstory displacement angles,and slightly decreases the acceleration response.Under both SSI and FIX systems,the structural failure mode is characterized by the external collapse of the second-story stone walls,which causes the roof stone slabs to lose support and fall,leading to overall collapse.The FIX system demonstrates better structural integrity and stability with slower crack development.In contrast,the SSI system exhibits cracks that appear earlier and develop more rapidly,causing more severe damage.The research findings provide a theoretical basis for the seismic reinforcement of existing stone structures on soft soil foundations.展开更多
In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(suc...In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(such as analytical,numerical,and regression)is challenging and sometimes unattainable.This is primarily due to the inherent nonlinearity of the model,the intricate nature of geotechnical materials,the complex interaction between soil and foundation,and the inherent uncertainty in soil parameters.Therefore,thesemethods often introduce assumptions and simplifications,resulting in relationships that deviate from the actual problem’s reality.In addition,many of these methods demand significant investments of time and resources but neglect to account for the uncertainty inherent in soil/rock parameters.This study explores the application of innovative intelligent techniques to predict S_(m) to address these shortcomings.Specifically,two optimization algorithms,namely teaching-learning-based optimization(TLBO)and harmony search(HS),are harnessed for this purpose.The modeling process involves utilizing input parameters,such as thewidth of the footing(B),the pressure exerted on the footing(q),the count of SPT(Standard Penetration Test)blows(N),the ratio of footing embedment(Df/B),and the footing’s geometry(L/B),during the training phase with a dataset comprising 151 data points.Then,the models’accuracy is assessed during the testing phase using statistical metrics,including the coefficient of determination(R^(2)),mean square error(MSE),and rootmean square error(RMSE),based on a dataset of 38 data points.The findings of this investigation underscore the substantial efficacy of intelligent optimization algorithms as valuable tools for geotechnical engineers when estimating S_(m).In addition,a sensitivity analysis of the input parameters in S_(m) estimation is conducted using@RISK software,revealing that among the various input parameters,the N exerts the most pronounced influence on S_(m).展开更多
Four different types of film-forming agents were added to the foundation formulations,and their effects on the makeup-holding properties of the foundations on human facial skin were determined by Visia-CR.The study sh...Four different types of film-forming agents were added to the foundation formulations,and their effects on the makeup-holding properties of the foundations on human facial skin were determined by Visia-CR.The study showed that there was a significant difference between the sample group with film-forming agent and the blank control group,indicating that the addition of film-forming agent had an effect on the makeup-holding performance of the foundation;the makeup-holding effect of the foundation formulated with trimethylsiloxysilicate or(acrylates/dimethicone copolymer,cyclopentasiloxane)was better than that of the foundation formulated with polymethylsilsesquioxane or VP/hexadecene copolymer.This experiment is of guidance significance for the formulation design of long-lasting foundation.展开更多
To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati...To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.展开更多
Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events,posing challenges for model training due to the high dimensionality of the data and the need for domain-spe...Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events,posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing,which frequently leads to the development of large and complex models.Inspired by the success of Large Language Models(LLMs),transformer-based foundation models have been developed for time series(TSFM).These models have been proven to reconstruct time series in a zero-shot manner,being able to capture different patterns that effectively characterize time series.This paper proposes the use of TSFM to generate embeddings of the input data space,making them more interpretable for machine learning models.To evaluate the effectiveness of our approach,we trained three classical machine learning algorithms and one neural network using the embeddings generated by the TSFM called Moment for predicting the remaining useful life of aircraft engines.We test the models trained with both the full training dataset and only 10%of the training samples.Our results show that training simple models,such as support vector regressors or neural networks,with embeddings generated by Moment not only accelerates the training process but also enhances performance in few-shot learning scenarios,where data is scarce.This suggests a promising alternative to complex deep learning architectures,particularly in industrial contexts with limited labeled data.展开更多
Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experi...Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth.展开更多
文摘Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.
文摘In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)method is applied to solve the governing vibration equation derived based on Euler–Bernoulli beam theory subject to the elastic foundation and boundary conditions.As a result,a general set of second-order ordinary differential equations emerges,and by appropriately setting the stiffness of the end springs,one can easily study the dynamics of various systems with classical or non-classical bound-ary conditions.The numerical simulations are conducted to study the pipe instability performance with respect to various boundary conditions,elastic support parameters,elastic foundation parameters and fluid mass ratios.The numerical model is validated by comparison with published data.It is found that the elastic support boundary conditions have significant effects on the stability of pipe resting on elas-tic foundation.The pipe stability performance is very sensitive to the two elastic foundation parameters.Larger fluid mass ratio enhances the pipe flutter stability performance but has no effects on the diver-gence.
文摘The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles due to the increase in loads on the structures,or the recovery of the foundation mass by injection,which is carried out when voids form between the ground and the wooden foundation elements.The high cost of foundation reinforcement methods led the National Agency for the Development of Tourist Heritage in Benin(ANPT)to replace the wooden foundation piles with reinforced concrete piles in the implementation of the project“reinventing the lakeside city of Ganvié”.This article presents an artisanal technology for the creation of reinforced concrete foundation piles in a lake environment.On-site examples made it possible to evaluate the performance of this artisanal implementation technique.The installation of these piles is carried out following manual drilling,followed by the installation of reinforcement and the pouring of concrete on site.The implementation of reinforced concrete foundation piles in place of the wooden ones studied in this article only impacted the infrastructure of the homes of the lakeside town of Ganviébut not the superstructure,which preserved the old traditional wooden architecture and thatched roofs.Thus,the ambition to move this city of Ganviéfrom the stage of a lake village to that of a floating city is very successful.This will contribute to improving the environment and living conditions of the populations and will promote economic development through tourism.
文摘On April 26,the China Foundation for Peace and Development(CFPD),in collaboration with the Shenzhen Foundation for International Exchange and Cooperation(SFIEC),the Shenzhen Ye Chenghai Charity Foundation and the China-Myanmar Economic Cooperation and Development Promotion Association(Myanmar),held a handover ceremony at Yangon Airport to donate five tons of medicine to the disasterstricken areas of Myanmar.
基金Projects(52008403,52378421)supported by the National Natural Science Foundation of ChinaProject(2022-Key-10)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(202207)supported by the Hunan Provincial Transportation Science and Technology,China。
文摘The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.
文摘Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from Hebei Province in China,Hu arrived in Singapore in 1994 as one of the first technical professionals dispatched by China.Since then,he has built a life and career firmly rooted in Singapore.Over more than four years at China Construction(South Pacific)Development Co Pte Ltd,he rose through the ranks from project engineer to site manager and eventually project director.In 1999,he left the company to start his own business,setting up a construction firm with several partners.His focus shifted to real estate in 2007,when he co-founded JVA Venture Pte Ltd.
文摘Establish an efficacy evaluation method for foundation products in vivo and vitro.The hiding power,whiteness,waterproof and anti-sweat effect were evaluated in vitro test,where CR ratio,Individual Type Angle (ITA°) and chromatic aberration (E) were measured as evaluation indicators by standard black/white cardboard,artificial leather and artificial sweat.In clinical assessment,the anti-stain,waterproof,anti-sweat effect of the foundation products were evaluated through the ΔE change,before and after the treatment of products by staining,wetting,sweating in forearm skin.There were significant differences in CR ratio of different types of samples on standard black and white cardboards (P<0.05),ITA° of artificial leather has a significant increase after treatment (P<0.05),?E﹤1.5 in black cloth after dipping test,while ΔE﹤1.5 in leather after water and artificial sweat treatment.Clinical assessment showed that ?E ﹤50%,which had no significant difference in human skin color,before and after the test (P>0.05).The change trend of efficacy evaluation in vitro test was basically consistent with that of visual evaluation and clinical assessment,indicated that the efficacy evaluation methods of foundation products in vivo and vitro are intuitive,quantifiable,and can be used to evaluate the efficacy of foundation products.
文摘Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.
基金support from the National Natural Science Foundation of China(No.52171274)。
文摘For the development of an integrated rounded rectangular wellhead platform with a bucket foundation,a model test was conducted to study the towing motion response of such a structure under still water and wave conditions.The influence of various factors on the floating stability of the structure was investigated through alterations of the towing conditions(draft,towing point position,and wave conditions),and the related influencing mechanism was analyzed.Comparison and analysis were performed to determine the changes in the structure motion pattern and various effects of towing conditions on the structure during towing in still water and regular waves.Moreover,the influence of each factor on the structure’s motion response during towing was analyzed using the Apriori algorithm.In addition,for the simulation of the towing process under actual sea conditions,a towing test was performed under irregular waves,and the stability of towing in irregular waves was compared with that in regular waves.
基金supported by the Research Start-Up Fund for Introducing Talents from Anhui Polytechnic University(S022023032)the Program for Synergy Innovation in the Anhui Higher Education Institutions of China(GXXT-2021-044 and GXXT-2022-082)+2 种基金the Scientific Research Foundation of Education Department of Anhui Province,China(2022AH040361)the National Natural Science Foundation of China(12172114)the Natural Science Funds for Distinguished Young Scholar of Anhui Province of China(2208085J25).
文摘This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator(PDDO).It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates.The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory.Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO.The results of the current method are validated through comparison with existing literature.The effects of geometric parameters,material properties,elastic foundation,porosity distribution,and boundary conditions on the frequency are investigated and discussed in detail.The highest fundamental dimensionless frequency occurs under SCSC boundary conditions,while the lowest is under SFSF boundary conditions.The porous FG plate with the fourth pore type,featuring high density of porosity at the top and low at the bottom,exhibits the highest fundamental frequency under SSSS,SFSF,and SCSC boundary conditions.The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.
文摘As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highrise buildings,the deep foundation pit support provides the necessary stability for the foundation structure of the building project,and more effectively guarantees the quality of the project.Through the reasonable supporting structure,the deep foundation pit technology can effectively prevent the risk of soil collapse,foundation pit deformation and other risks,and improve the safety factor of the whole construction project.Especially in the high-rise buildings,the deep foundation pit support technology can consolidate the foundation for the long-term stability of the project,and significantly prolong the service life of the building.The continuous development of deep foundation pit construction technology is the inevitable demand of high-rise building construction,and also provides a powerful help for the development of civil engineering industry.Based on this,this paper focuses on the application of deep foundation pit construction technology in civil engineering construction.
基金support from Strategic Project of Precision Surgery,Tsinghua UniversityInitiative Scientific Research Program,Institute for Intelligent Healthcare,Tsinghua University+5 种基金Tsinghua-Foshan Institute of Advanced ManufacturingNational Natural Science Foundation of China(61735016)Beijing Nova Program(20230484308)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)Youth Elite Program of Beijing Friendship Hospital(YYQCJH2022-9)Science and Technology Program of Beijing Tongzhou District(KJ2023CX012).
文摘Foundation models(FMs)have rapidly evolved and have achieved signicant accomplishments in computer vision tasks.Specically,the prompt mechanism conveniently allows users to integrate image prior information into the model,making it possible to apply models without any training.Therefore,we proposed a workflow based on foundation models and zero training to solve the tasks of photoacoustic(PA)image processing.We employed the Segment Anything Model(SAM)by setting simple prompts and integrating the model's outputs with prior knowledge of the imaged objects to accomplish various tasks,including:(1)removing the skin signal in three-dimensional PA image rendering;(2)dual speed-of-sound reconstruction,and(3)segmentation ofnger blood vessels.Through these demonstrations,we have concluded that FMs can be directly applied in PA imaging without the requirement for network design and training.This potentially allows for a hands-on,convenient approach to achieving efficient and accurate segmentation of PA images.This paper serves as a comprehensive tutorial,facilitating the mastery of the technique through the provision of code and sample datasets.
文摘The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems.
基金jointly sponsored by Fujian Province construction science and technology development research project(2023-B-07,2023-K-47,2022-K-118)。
文摘The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil foundations can prolong the structure's natural vibration period and enhance its seismic response.We develops a soilstructure interaction system model and a comparative rigid foundation model using the finite element software LS-DYNA to investigate the impact of SSI on the dynamic characteristics and seismic response of stone structures.The results indicate that the SSI effect alters stone structures'dynamic properties and seismic response.This alteration is evident in the extended natural vibration period,which reduces overall stiffness,increases interstory displacement angles,and slightly decreases the acceleration response.Under both SSI and FIX systems,the structural failure mode is characterized by the external collapse of the second-story stone walls,which causes the roof stone slabs to lose support and fall,leading to overall collapse.The FIX system demonstrates better structural integrity and stability with slower crack development.In contrast,the SSI system exhibits cracks that appear earlier and develop more rapidly,causing more severe damage.The research findings provide a theoretical basis for the seismic reinforcement of existing stone structures on soft soil foundations.
文摘In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(such as analytical,numerical,and regression)is challenging and sometimes unattainable.This is primarily due to the inherent nonlinearity of the model,the intricate nature of geotechnical materials,the complex interaction between soil and foundation,and the inherent uncertainty in soil parameters.Therefore,thesemethods often introduce assumptions and simplifications,resulting in relationships that deviate from the actual problem’s reality.In addition,many of these methods demand significant investments of time and resources but neglect to account for the uncertainty inherent in soil/rock parameters.This study explores the application of innovative intelligent techniques to predict S_(m) to address these shortcomings.Specifically,two optimization algorithms,namely teaching-learning-based optimization(TLBO)and harmony search(HS),are harnessed for this purpose.The modeling process involves utilizing input parameters,such as thewidth of the footing(B),the pressure exerted on the footing(q),the count of SPT(Standard Penetration Test)blows(N),the ratio of footing embedment(Df/B),and the footing’s geometry(L/B),during the training phase with a dataset comprising 151 data points.Then,the models’accuracy is assessed during the testing phase using statistical metrics,including the coefficient of determination(R^(2)),mean square error(MSE),and rootmean square error(RMSE),based on a dataset of 38 data points.The findings of this investigation underscore the substantial efficacy of intelligent optimization algorithms as valuable tools for geotechnical engineers when estimating S_(m).In addition,a sensitivity analysis of the input parameters in S_(m) estimation is conducted using@RISK software,revealing that among the various input parameters,the N exerts the most pronounced influence on S_(m).
文摘Four different types of film-forming agents were added to the foundation formulations,and their effects on the makeup-holding properties of the foundations on human facial skin were determined by Visia-CR.The study showed that there was a significant difference between the sample group with film-forming agent and the blank control group,indicating that the addition of film-forming agent had an effect on the makeup-holding performance of the foundation;the makeup-holding effect of the foundation formulated with trimethylsiloxysilicate or(acrylates/dimethicone copolymer,cyclopentasiloxane)was better than that of the foundation formulated with polymethylsilsesquioxane or VP/hexadecene copolymer.This experiment is of guidance significance for the formulation design of long-lasting foundation.
基金Projects(51878103,52208370)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyjcxtt X0003)supported by the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,ChinaProject(2022CDJQY-012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.
基金Funded by the Spanish Government and FEDER funds(AEI/FEDER,UE)under grant PID2021-124502OB-C42(PRESECREL)the predoctoral program“Concepción Arenal del Programa de Personal Investigador en formación Predoctoral”funded by Universidad de Cantabria and Cantabria’s Government(BOC 18-10-2021).
文摘Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events,posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing,which frequently leads to the development of large and complex models.Inspired by the success of Large Language Models(LLMs),transformer-based foundation models have been developed for time series(TSFM).These models have been proven to reconstruct time series in a zero-shot manner,being able to capture different patterns that effectively characterize time series.This paper proposes the use of TSFM to generate embeddings of the input data space,making them more interpretable for machine learning models.To evaluate the effectiveness of our approach,we trained three classical machine learning algorithms and one neural network using the embeddings generated by the TSFM called Moment for predicting the remaining useful life of aircraft engines.We test the models trained with both the full training dataset and only 10%of the training samples.Our results show that training simple models,such as support vector regressors or neural networks,with embeddings generated by Moment not only accelerates the training process but also enhances performance in few-shot learning scenarios,where data is scarce.This suggests a promising alternative to complex deep learning architectures,particularly in industrial contexts with limited labeled data.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2021YFB2601100)the National Natural Science Foundation of China (Grant No. 51979190)。
文摘Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth.