Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel...Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.展开更多
In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of i...In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of increments. Our results imply the theorem that have been given by Csorgo and Revesz (1978), and some of their conditions are removed.展开更多
The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hot...The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.展开更多
In this paper, we prove that two-parameter Volterra multifractional process can be approximated in law in the topology of the anisotropic Besov spaces by the family of processes {Bn(s, t)}n∈N defined by Bn(s,t)=...In this paper, we prove that two-parameter Volterra multifractional process can be approximated in law in the topology of the anisotropic Besov spaces by the family of processes {Bn(s, t)}n∈N defined by Bn(s,t)=∫0^s∫0^tKa(s)(s,u)Kβ(t)(t,v)θn(u,u)dudu,where {θn(u, v)),n∈N is a family of processes, converging in law to a Brownian sheet as n -* oo, based on the well known Donsker's theorem.展开更多
A drought is when reduced rainfall leads to a water crisis,impacting daily life.Over recent decades,droughts have affected various regions,including South Sulawesi,Indonesia.This study aims to map the probability of m...A drought is when reduced rainfall leads to a water crisis,impacting daily life.Over recent decades,droughts have affected various regions,including South Sulawesi,Indonesia.This study aims to map the probability of meteo-rological drought months using the 1-month Standardized Precipitation Index(SPI)in South Sulawesi.Based on SPI,meteorological drought characteristics are inversely proportional to drought event intensity,which can be modeled using a Non-Homogeneous Poisson Process,specifically the Power Law Process.The estimation method employs Maximum Likelihood Estimation(MLE),where drought event intensities are treated as random variables over a set time interval.Future drought months are estimated using the cumulative Power Law Process function,with theβandγparameters more significant than 0.The probability of drought months is determined using the Non-Homogeneous Poisson Process,which models event occurrence over time,considering varying intensities.The results indicate that,of the 24 districts/cities in South Sulawesi,14 experienced meteorological drought based on the SPI and Power Law Process model.The estimated number of months of drought occurrence in the next 12 months is one month of drought with an occurrence probability value of 0.37 occurring in November in the Selayar,Bulukumba,Bantaeng,Jeneponto,Takalar and Gowa areas,in October in the Sinjai,Barru,Bone,Soppeng,Pinrang and Pare-pare areas,as well as in December in the Maros and Makassar areas.展开更多
We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correl...We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correlation in moderate time scales while being analytically tractable. Important statistics of traffic burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.展开更多
This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is ...This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is derived for the distribution of the surplus immediately before ruin, for the distribution of the surplus immediately after ruin and the joint distribution of the surplus immediately before and after ruin. The asymptotic property of these ruin functions is also investigated.展开更多
In this paper, we first prove that one-parameter standard α-stable sub-Gaussian processes can be approximated by processes constructed by integrals based on the Poisson process with random intensity. Then we extend t...In this paper, we first prove that one-parameter standard α-stable sub-Gaussian processes can be approximated by processes constructed by integrals based on the Poisson process with random intensity. Then we extend this result to the two-parameter processes. At last, we consider the approximation of the subordinated fractional Brownian motion.展开更多
The mass of the embedded systems are driven by second batteries, not by wired power supply. So saving energy is one of the main design goals for embedded system. In this paper we present a new technique for modelling ...The mass of the embedded systems are driven by second batteries, not by wired power supply. So saving energy is one of the main design goals for embedded system. In this paper we present a new technique for modelling and solving the dynamic power management (DPM) problem for embedded systems with complex behavioural characteristics. First we model a power-managed embedded computing system as a controllable Flow Chart. Then we use the Poisson process for optimisation, and give the power management algorithm by the help of Dynamic Voltage Scaling (DVS) technology. At last we built the experi- mental model using the PXA 255 Processors. The experimental results showed that the proposed technique can achieve more than 12% power saving compared to other existing DPM techniques.展开更多
Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most ...Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most used one.However, the failure behavior of software does not follow the NHPP in a statistically rigorous manner, and the pure random method might be not enough to describe the software failure behavior. To solve these problems, this paper proposes a new integrated approach that combines stochastic process and grey system theory to describe the failure behavior of software. A grey NHPP software reliability model is put forward in a discrete form, and a grey-based approach for estimating software reliability under the NHPP is proposed as a nonlinear multi-objective programming problem. Finally, four grey NHPP software reliability models are applied to four real datasets, the dynamic R-square and predictive relative error are calculated. Comparing with the original single NHPP software reliability model, it is found that the modeling using the integrated approach has a higher prediction accuracy of software reliability. Therefore, there is the characteristics of grey uncertain information in the NHPP software reliability models, and exploiting the latent grey uncertain information might lead to more accurate software reliability estimation.展开更多
New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aimin...New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aiming at the test process which is high expense and small sample-size in the development of complex system, the specific methods are studied on how to process the statistical information of Bayesian reliability growth regarding diverse populations. Firstly, according to the characteristics of reliability growth during product development, the Bayesian method is used to integrate the testing information of multi-stage and the order relations of distribution parameters. And then a Gamma-Beta prior distribution is proposed based on non-homogeneous Poisson process(NHPP) corresponding to the reliability growth process. The posterior distribution of reliability parameters is obtained regarding different stages of product, and the reliability parameters are evaluated based on the posterior distribution. Finally, Bayesian approach proposed in this paper for multi-stage reliability growth test is applied to the test process which is small sample-size in the astronautics filed. The results of a numerical example show that the presented model can make use of the diverse information synthetically, and pave the way for the application of the Bayesian model for multi-stage reliability growth test evaluation with small sample-size. The method is useful for evaluating multi-stage system reliability and making reliability growth plan rationally.展开更多
The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of ...The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of the study that has been done on the Goel-Okumoto software reliability model is parameter estimation using the MLE method and model fit. It is widely known that predictive analysis is very useful for modifying, debugging and determining when to terminate software development testing process. However, there is a conspicuous absence of literature on both the classical and Bayesian predictive analyses on the model. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model. Driven by the requirement of highly reliable software used in computers embedded in automotive, mechanical and safety control systems, industrial and quality process control, real-time sensor networks, aircrafts, nuclear reactors among others, we address four issues in single-sample prediction associated closely with software development process. We have adopted Bayesian methods based on non-informative priors to develop explicit solutions to these problems. An example with real data in the form of time between software failures will be used to illustrate the developed methodologies.展开更多
In this article,we study the hitting probabilities of weighted Poisson processes and their subordinated versions with different intensities.Furthermore,we simulate and analyze the asymptotic properties of the hitting ...In this article,we study the hitting probabilities of weighted Poisson processes and their subordinated versions with different intensities.Furthermore,we simulate and analyze the asymptotic properties of the hitting probabilities in different weights and give an example in the case of subordination.展开更多
In this article, we study the Kolmogorov-Smirnov type goodness-of-fit test for the inhomogeneous Poisson process with the unknown translation parameter as multidimensional parameter. The basic hypothesis and the alter...In this article, we study the Kolmogorov-Smirnov type goodness-of-fit test for the inhomogeneous Poisson process with the unknown translation parameter as multidimensional parameter. The basic hypothesis and the alternative are composite and carry to the intensity measure of inhomogeneous Poisson process and the intensity function is regular. For this model of shift parameter, we propose test which is asymptotically partially distribution free and consistent. We show that under null hypothesis the limit distribution of this statistic does not depend on unknown parameter.展开更多
The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflo...The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflow data was obtained from the storm water pipeline of a municipality. The aim is to verify the overflow arrival pattern and check whether the Poisson process can be applied. The adopted method is the analysis over the inter-arrival times. The exponential distribution test is conducted on the annual data set as well as the entire data set. The results show that all data sets follow the exponential distribution. With the verification of Poisson process, specific examples are also given to show how the Poisson process properties can be used in the management of storm water pipeline management. For other data that are featured with various heterogeneities, the homogenous Poisson process might not be able to be verified and used. Under such circumstances, non-homogenous survival model can be used to simulate the arrival process.展开更多
Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope...Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope. Also the background earthquakes and anomaly earthquakes both satisfy the 2-D Poisson process of different parameters respectively. In the paper, the concept of N-th order distance is introduced in order to transform 2-D superimposed Poisson process into 1-D mixture density function. On the basis of choosing the distance, mixture density function is decomposed to recognize the anomaly earthquakes through genetic algorithm. Combined with the temporal scanning of C value, the algorithm is applied to the recognition on spatial pattern of foreshock anomalies by exam-ples of Songpan and Longling sequences in the southwest of China.展开更多
In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α...In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaiing phenomenon.展开更多
文摘Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.
基金Supported by the National Natural Science Foundation of ChinaZhejiang Province Natural Science Fund
文摘In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of increments. Our results imply the theorem that have been given by Csorgo and Revesz (1978), and some of their conditions are removed.
基金supported in part by National Key Research and Development Project under Grant 2020YFB1807204in part by the National Natural Science Foundation of China under Grant U2001213 and 61971191+2 种基金in part by the Beijing Natural Science Foundation under Grant L201011in part by the Key project of Natural Science Foundation of Jiangxi Province under Grant 20202ACBL202006in part by the Science and Technology Foundation of Jiangxi Province(20202BCD42010)。
文摘The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.
基金partially supported by National Natural Science Foundation of China(Grant Nos.1140131311771209)+6 种基金partially supported by National Natural Science Foundation of China(Grant No.11426036)Natural Science Foundation of Jiangsu Province(Grant No.BK20161579)China Postdoctoral Science Foundation(Grant Nos.2014M5603682015T80475)2014 Qing Lan ProjectNatural Science Foundation of Anhui Province(Grant No.1408085QA10)Key Natural Science Foundation of Anhui Education Commission(Grant No.KJ2016A453)
文摘In this paper, we prove that two-parameter Volterra multifractional process can be approximated in law in the topology of the anisotropic Besov spaces by the family of processes {Bn(s, t)}n∈N defined by Bn(s,t)=∫0^s∫0^tKa(s)(s,u)Kβ(t)(t,v)θn(u,u)dudu,where {θn(u, v)),n∈N is a family of processes, converging in law to a Brownian sheet as n -* oo, based on the well known Donsker's theorem.
基金funded by Hasanuddin University,grant number 00309/UN4.22/PT.01.03/2024.
文摘A drought is when reduced rainfall leads to a water crisis,impacting daily life.Over recent decades,droughts have affected various regions,including South Sulawesi,Indonesia.This study aims to map the probability of meteo-rological drought months using the 1-month Standardized Precipitation Index(SPI)in South Sulawesi.Based on SPI,meteorological drought characteristics are inversely proportional to drought event intensity,which can be modeled using a Non-Homogeneous Poisson Process,specifically the Power Law Process.The estimation method employs Maximum Likelihood Estimation(MLE),where drought event intensities are treated as random variables over a set time interval.Future drought months are estimated using the cumulative Power Law Process function,with theβandγparameters more significant than 0.The probability of drought months is determined using the Non-Homogeneous Poisson Process,which models event occurrence over time,considering varying intensities.The results indicate that,of the 24 districts/cities in South Sulawesi,14 experienced meteorological drought based on the SPI and Power Law Process model.The estimated number of months of drought occurrence in the next 12 months is one month of drought with an occurrence probability value of 0.37 occurring in November in the Selayar,Bulukumba,Bantaeng,Jeneponto,Takalar and Gowa areas,in October in the Sinjai,Barru,Bone,Soppeng,Pinrang and Pare-pare areas,as well as in December in the Maros and Makassar areas.
文摘We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correlation in moderate time scales while being analytically tractable. Important statistics of traffic burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.
基金This work was supported in part by the National Natural Science Foundation of China (10071058, 70273029) the Ministry of Education of China.
文摘This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is derived for the distribution of the surplus immediately before ruin, for the distribution of the surplus immediately after ruin and the joint distribution of the surplus immediately before and after ruin. The asymptotic property of these ruin functions is also investigated.
基金supported by National Natural Science Foundation of China (10901054)
文摘In this paper, we first prove that one-parameter standard α-stable sub-Gaussian processes can be approximated by processes constructed by integrals based on the Poisson process with random intensity. Then we extend this result to the two-parameter processes. At last, we consider the approximation of the subordinated fractional Brownian motion.
基金Project (No. 2003AA1Z2120) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The mass of the embedded systems are driven by second batteries, not by wired power supply. So saving energy is one of the main design goals for embedded system. In this paper we present a new technique for modelling and solving the dynamic power management (DPM) problem for embedded systems with complex behavioural characteristics. First we model a power-managed embedded computing system as a controllable Flow Chart. Then we use the Poisson process for optimisation, and give the power management algorithm by the help of Dynamic Voltage Scaling (DVS) technology. At last we built the experi- mental model using the PXA 255 Processors. The experimental results showed that the proposed technique can achieve more than 12% power saving compared to other existing DPM techniques.
基金supported by the National Natural Science Foundation of China (71671090)the Fundamental Research Funds for the Central Universities (NP2020022)the Qinglan Project of Excellent Youth or Middle-Aged Academic Leaders in Jiangsu Province。
文摘Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most used one.However, the failure behavior of software does not follow the NHPP in a statistically rigorous manner, and the pure random method might be not enough to describe the software failure behavior. To solve these problems, this paper proposes a new integrated approach that combines stochastic process and grey system theory to describe the failure behavior of software. A grey NHPP software reliability model is put forward in a discrete form, and a grey-based approach for estimating software reliability under the NHPP is proposed as a nonlinear multi-objective programming problem. Finally, four grey NHPP software reliability models are applied to four real datasets, the dynamic R-square and predictive relative error are calculated. Comparing with the original single NHPP software reliability model, it is found that the modeling using the integrated approach has a higher prediction accuracy of software reliability. Therefore, there is the characteristics of grey uncertain information in the NHPP software reliability models, and exploiting the latent grey uncertain information might lead to more accurate software reliability estimation.
基金supported by Sustentation Program of National Ministries and Commissions of China (Grant No. 51319030302 and Grant No. 9140A19030506KG0166)
文摘New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aiming at the test process which is high expense and small sample-size in the development of complex system, the specific methods are studied on how to process the statistical information of Bayesian reliability growth regarding diverse populations. Firstly, according to the characteristics of reliability growth during product development, the Bayesian method is used to integrate the testing information of multi-stage and the order relations of distribution parameters. And then a Gamma-Beta prior distribution is proposed based on non-homogeneous Poisson process(NHPP) corresponding to the reliability growth process. The posterior distribution of reliability parameters is obtained regarding different stages of product, and the reliability parameters are evaluated based on the posterior distribution. Finally, Bayesian approach proposed in this paper for multi-stage reliability growth test is applied to the test process which is small sample-size in the astronautics filed. The results of a numerical example show that the presented model can make use of the diverse information synthetically, and pave the way for the application of the Bayesian model for multi-stage reliability growth test evaluation with small sample-size. The method is useful for evaluating multi-stage system reliability and making reliability growth plan rationally.
文摘The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of the study that has been done on the Goel-Okumoto software reliability model is parameter estimation using the MLE method and model fit. It is widely known that predictive analysis is very useful for modifying, debugging and determining when to terminate software development testing process. However, there is a conspicuous absence of literature on both the classical and Bayesian predictive analyses on the model. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model. Driven by the requirement of highly reliable software used in computers embedded in automotive, mechanical and safety control systems, industrial and quality process control, real-time sensor networks, aircrafts, nuclear reactors among others, we address four issues in single-sample prediction associated closely with software development process. We have adopted Bayesian methods based on non-informative priors to develop explicit solutions to these problems. An example with real data in the form of time between software failures will be used to illustrate the developed methodologies.
基金supported by the National Natural Science Foundation of China(11571262,11731012 and 11971361)。
文摘In this article,we study the hitting probabilities of weighted Poisson processes and their subordinated versions with different intensities.Furthermore,we simulate and analyze the asymptotic properties of the hitting probabilities in different weights and give an example in the case of subordination.
文摘In this article, we study the Kolmogorov-Smirnov type goodness-of-fit test for the inhomogeneous Poisson process with the unknown translation parameter as multidimensional parameter. The basic hypothesis and the alternative are composite and carry to the intensity measure of inhomogeneous Poisson process and the intensity function is regular. For this model of shift parameter, we propose test which is asymptotically partially distribution free and consistent. We show that under null hypothesis the limit distribution of this statistic does not depend on unknown parameter.
文摘The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflow data was obtained from the storm water pipeline of a municipality. The aim is to verify the overflow arrival pattern and check whether the Poisson process can be applied. The adopted method is the analysis over the inter-arrival times. The exponential distribution test is conducted on the annual data set as well as the entire data set. The results show that all data sets follow the exponential distribution. With the verification of Poisson process, specific examples are also given to show how the Poisson process properties can be used in the management of storm water pipeline management. For other data that are featured with various heterogeneities, the homogenous Poisson process might not be able to be verified and used. Under such circumstances, non-homogenous survival model can be used to simulate the arrival process.
文摘Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope. Also the background earthquakes and anomaly earthquakes both satisfy the 2-D Poisson process of different parameters respectively. In the paper, the concept of N-th order distance is introduced in order to transform 2-D superimposed Poisson process into 1-D mixture density function. On the basis of choosing the distance, mixture density function is decomposed to recognize the anomaly earthquakes through genetic algorithm. Combined with the temporal scanning of C value, the algorithm is applied to the recognition on spatial pattern of foreshock anomalies by exam-ples of Songpan and Longling sequences in the southwest of China.
基金Project supported in part by National Basic Research Program of China (973 Project) (Grant No 2006CB705506)Hi-Tech Research and Development Program of China (863 Project) (Grant No 2007AA11Z222)National Natural Science Foundation of China (Grant Nos 60721003 and 60774034)
文摘In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaiing phenomenon.