This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model...This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.展开更多
With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare re...With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.展开更多
As China’s first new energy comprehensive demonstration zone,Ningxia’s solar photovoltaic(PV)industry has developed rapidly,but it still faces shortcomings in terms of intelligence and digitalization.This study focu...As China’s first new energy comprehensive demonstration zone,Ningxia’s solar photovoltaic(PV)industry has developed rapidly,but it still faces shortcomings in terms of intelligence and digitalization.This study focuses on the application and construction of an intelligent big data platform based on Narrowband Internet of Things(NB-IoT)technology within Ningxia’s solar PV industry.It explores the application trends of digital technology in the energy sector,particularly in the PV industry under the backdrop of energy reform,analyzes the technological development status of the smart energy field both domestically and internationally,and details the research methods and design components of the platform(including the photovoltaic base data platform,outdoor mobile application,remote data system,and back-office management system).The study discusses the opportunities and challenges Ningxia’s PV industry faces and proposes a construction pathway.It provides a theoretical foundation and technical support for the digital transformation of Ningxia’s PV industry,facilitating industrial upgrading and sustainable development.Although the current research is limited to the proposed design scheme,it establishes a basis for future empirical research and platform development.展开更多
With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o...With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.展开更多
5G-R is the main type of next-generation mobile communication system for railways,offering highly reliable broadband data transmission services for intelligent railway operations.In the light of meeting the bearing de...5G-R is the main type of next-generation mobile communication system for railways,offering highly reliable broadband data transmission services for intelligent railway operations.In the light of meeting the bearing demands of the 5G-R network,a comprehensive data transmission platform is proposed.This platform enables unified accession for various data service systems and applies Software Defined Network(SDN)technology for dynamic routing selection and high-effective data forwarding.Based on shared key lightweight access authentication technology,two-way identity authentication is performed for mobile terminals and network-side devices,ensuring the legitimacy verification of heterogeneous terminals within the application domain.展开更多
Data is a key asset for digital platforms,and mergers and acquisitions(M&As)are an important way for platform enterprises to acquire it.The types of data obtained from intra-industry and cross-sector M&As diff...Data is a key asset for digital platforms,and mergers and acquisitions(M&As)are an important way for platform enterprises to acquire it.The types of data obtained from intra-industry and cross-sector M&As differ,as does the extent to which they interact within or between platforms.The impact of such data on corporate market performance is an important question to consider when selecting strategies for digital platform M&As.Based on our research on advertising-driven platforms,we developed a two-stage Hotelling game model for comparing the market performance effects of intra-industry M&As and cross-sector M&As for digital platforms.We carried out an empirical test using relevant data from advertising-driven digital platforms between 2009 and 2021,as well as a case study on Baidu’s M&A activities.Our research discovered that intra-industry M&As driven by“data economies of scale”and cross-sector M&As driven by“data economies of scope”are both beneficial to the market performance of platform enterprises.Intra-industry M&As have a more significant positive effect on the market performance of platform enterprises because the same types of data are easier to integrate and develop the“network effect of data scale”.From a data factor perspective,this paper reveals the inherent economic logic by which different types of M&As influence the market performance of digital platforms,as well as policymaking recommendations for all digital platforms to select M&A strategies based on data scale,data scope,and the network effect of data.展开更多
Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of ...Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of China’s Major Research Plan entitled“Fundamental Researches on the Formation and Response Mechanism of the Air Pollution Complex in China”(or the Plan)has funded 76 research projects to explore the causes of air pollution in China,and the key processes of air pollution in atmospheric physics and atmospheric chemistry.In order to summarize the abundant data from the Plan and exhibit the long-term impacts domestically and internationally,an integration project is responsible for collecting the various types of data generated by the 76 projects of the Plan.This project has classified and integrated these data,forming eight categories containing 258 datasets and 15 technical reports in total.The integration project has led to the successful establishment of the China Air Pollution Data Center(CAPDC)platform,providing storage,retrieval,and download services for the eight categories.This platform has distinct features including data visualization,related project information querying,and bilingual services in both English and Chinese,which allows for rapid searching and downloading of data and provides a solid foundation of data and support for future related research.Air pollution control in China,especially in the past decade,is undeniably a global exemplar,and this data center is the first in China to focus on research into the country’s air pollution complex.展开更多
With the rapid development of information technology,smart teaching platforms have become important tools for higher education teaching reform.As a core course of computer science and technology-related majors in high...With the rapid development of information technology,smart teaching platforms have become important tools for higher education teaching reform.As a core course of computer science and technology-related majors in higher education,the data structure course lays a solid foundation for students’professional learning and plays an important role in promoting their future success in technology,research,and industry.This study conducts an in-depth analysis of the pain points faced by the data structure course,and explores a teaching reform and practice of integration of theory and practice based on the system application of a smart teaching platform before class,during class,and after class.The reform practice shows that this teaching mode improves students’learning initiative,learning motivation,and practical skills.Students not only achieved better results in knowledge mastery but also significantly improved in problem analysis and solution.展开更多
Background Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment.However,limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to...Background Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment.However,limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to pose significant barriers to clinical research progress.In response,our research team has embarked on the development of a specialized clinical research database for cardiology,thereby establishing a comprehensive digital platform that facilitates both clinical decision-making and research endeavors.Methods The database incorporated actual clinical data from patients who received treatment at the Cardiovascular Medicine Department of Chinese PLA General Hospital from 2012 to 2021.It included comprehensive data on patients'basic information,medical history,non-invasive imaging studies,laboratory test results,as well as peri-procedural information related to interventional surgeries,extracted from the Hospital Information System.Additionally,an innovative artificial intelligence(AI)-powered interactive follow-up system had been developed,ensuring that nearly all myocardial infarction patients received at least one post-discharge follow-up,thereby achieving comprehensive data management throughout the entire care continuum for highrisk patients.Results This database integrates extensive cross-sectional and longitudinal patient data,with a focus on higher-risk acute coronary syndrome patients.It achieves the integration of structured and unstructured clinical data,while innovatively incorporating AI and automatic speech recognition technologies to enhance data integration and workflow efficiency.It creates a comprehensive patient view,thereby improving diagnostic and follow-up quality,and provides high-quality data to support clinical research.Despite limitations in unstructured data standardization and biological sample integrity,the database's development is accompanied by ongoing optimization efforts.Conclusion The cardiovascular specialty clinical database is a comprehensive digital archive integrating clinical treatment and research,which facilitates the digital and intelligent transformation of clinical diagnosis and treatment processes.It supports clinical decision-making and offers data support and potential research directions for the specialized management of cardiovascular diseases.展开更多
Nowadays, we experience an abundance of Internet of Things middleware solutions that make the sensors and the actuators are able to connect to the Internet. These solutions, referred to as platforms to gain a widespre...Nowadays, we experience an abundance of Internet of Things middleware solutions that make the sensors and the actuators are able to connect to the Internet. These solutions, referred to as platforms to gain a widespread adoption, have to meet the expectations of different players in the IoT ecosystem, including devices [1]. Low cost devices are easily able to connect wirelessly to the Internet, from handhelds to coffee machines, also known as Internet of Things (IoT). This research describes the methodology and the development process of creating an IoT platform. This paper also presents the architecture and implementation for the IoT platform. The goal of this research is to develop an analytics engine which can gather sensor data from different devices and provide the ability to gain meaningful information from IoT data and act on it using machine learning algorithms. The proposed system is introducing the use of a messaging system to improve the overall system performance as well as provide easy scalability.展开更多
The Data Platform of Resource and Environment—whose data mainly come from field observation stations,spatial observations,and internet service institutions—is the base of data analysis and model simulation in geosci...The Data Platform of Resource and Environment—whose data mainly come from field observation stations,spatial observations,and internet service institutions—is the base of data analysis and model simulation in geoscience research in China.Among this integrated data platform,the tasks of the data platform of field observation stations are principally data collection,management,assimilation,and share service.Taking into consideration the distributing characteristics of the data sources and the service objects,the authors formulated the framework of the field observation stations' data platform based on the grid technology and designed its operating processes.The authors have further defined and analyzed the key functions and implementing techniques for each module.In a Linux operating system,validation tests for the data platform's function on data replication,data synchronization,and unified data service have been conducted under an environment that of the simulating field stations.展开更多
This paper makes astudy on the interactive digital gener-alization,where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure,which are done by human andcomputer,respectiv...This paper makes astudy on the interactive digital gener-alization,where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure,which are done by human andcomputer,respectively.And an inter-active map generalization environmentfor large scale topographic map is thendesigned and realized.This researchfocuses on:①the significance of re-searching an interactive map generali-zation environment,②the features oflarge scale topographic map and inter-active map generalization,③the con-struction of map generalization-orien-ted database platform.展开更多
To obtain the platform s big data analytics support,manufacturers in the traditional retail channel must decide whether to use the direct online channel.A retail supply chain model and a direct online supply chain mod...To obtain the platform s big data analytics support,manufacturers in the traditional retail channel must decide whether to use the direct online channel.A retail supply chain model and a direct online supply chain model are built,in which manufacturers design products alone in the retail channel,while the platform and manufacturer complete the product design in the direct online channel.These two models are analyzed using the game theoretical model and numerical simulation.The findings indicate that if the manufacturers design capabilities are not very high and the commission rate is not very low,the manufacturers will choose the direct online channel if the platform s technical efforts are within an interval.When the platform s technical efforts are exogenous,they positively influence the manufacturers decisions;however,in the endogenous case,the platform s effect on the manufacturers is reflected in the interaction of the commission rate and cost efficiency.The manufacturers and the platform should make synthetic effort decisions based on the manufacturer s development capabilities,the intensity of market competition,and the cost efficiency of the platform.展开更多
"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course ..."Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.展开更多
To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex mult...To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex multivariate statistical analysis, and low accuracy and difficulty in mechanical property prediction, an industrial data analysis platform for coiled tubing steel strips production has been preliminarily developed.As the premise and foundation of analysis, industrial data collection, storage, and utilization are realized by using multiple big data technologies.With Django as the agile development framework, data visualization and comprehensive analyses are achieved.The platform has functions including overview survey, stability analysis, comprehensive analysis(such as exploratory data analysis, correlation analysis, and multivariate statistics),precise steel strength prediction, and skin-passing process recommendation.The platform is helpful for production overviewing and prompt responding, laying a foundation for an in-depth understanding of product characteristics and improving product performance stability.展开更多
The calculation results of the rolling force and torque model based on Orowan's differential equation numerical solution method do not fit with the industrial measurements very well.In particular,a quite large dev...The calculation results of the rolling force and torque model based on Orowan's differential equation numerical solution method do not fit with the industrial measurements very well.In particular,a quite large deviation on the torque model was found.On the basis of analyzing the shortcomings of the existing method,an improved rolling force and torque model algorithm aided by the Process Integrated Data Application System platform is proposed.Accordingly,the calculation accuracy of the rolling torque model is improved.The improved models are verified by 1711136 records of a data platform.The improved models are also based on Orowan's differential equation.Two coefficients,namely,friction factor and forward slip,are recognized as the crucial factors to be determined from industrial measurements to improve the accuracy.Therefore,the proposed method is a hybrid method that can be used to deeply understand the rolling process and improve the model's accuracy by combining traditional plastic mechanics and data-driving global optimization algorithms.This paper proposes a new approach to studying theoretical rolling deformation models powered by the industrial data platform.展开更多
Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a sof...Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a software development framework acting as compiler, cross-project linker and data fetcher, which allow hot-swaps in order to compare various versions of software under test. The flexibility fostered by IRIS allowed modular exchange of software libraries among developers, making it a powerful development tool. The IRIS platform used input data ROOT-ntuples [3];however a new data model is sought, in line with the facilities offered by IRIS. The schematic of a possible new data structuring—as a user implemented object oriented data base, is presented.展开更多
The so-called smart city is a new form of information technology that is achieved through the integration of the contemporary advanced big data technology,Internet of Things technology,cloud computing technology,and s...The so-called smart city is a new form of information technology that is achieved through the integration of the contemporary advanced big data technology,Internet of Things technology,cloud computing technology,and spatial geographic information.At present,the application of this technology is important for the urban construction,planning,and services as well as management.This technology also provides great convenience in these aspects,which has allowed the cities to develop and transform towards the direction of smart cities.Based on this situation,the construction of spatiotemporal big data platforms in smart cities was analyzed in this article,and this analysis may provide a reference for the construction and development of todays smart cities.展开更多
基金2024 Anqing Normal University University-Level Key Project(ZK2024062D)。
文摘This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.
文摘With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.
基金supported by the Scientific Research Foundation of Xinhua College,Ningxia University,ChinaProject name:Preliminary Exploration of Ningxia Solar Photovoltaic Industry Intelligent Big Data Platform Construction Based on NB-IoT(Project No.23XHKY07).
文摘As China’s first new energy comprehensive demonstration zone,Ningxia’s solar photovoltaic(PV)industry has developed rapidly,but it still faces shortcomings in terms of intelligence and digitalization.This study focuses on the application and construction of an intelligent big data platform based on Narrowband Internet of Things(NB-IoT)technology within Ningxia’s solar PV industry.It explores the application trends of digital technology in the energy sector,particularly in the PV industry under the backdrop of energy reform,analyzes the technological development status of the smart energy field both domestically and internationally,and details the research methods and design components of the platform(including the photovoltaic base data platform,outdoor mobile application,remote data system,and back-office management system).The study discusses the opportunities and challenges Ningxia’s PV industry faces and proposes a construction pathway.It provides a theoretical foundation and technical support for the digital transformation of Ningxia’s PV industry,facilitating industrial upgrading and sustainable development.Although the current research is limited to the proposed design scheme,it establishes a basis for future empirical research and platform development.
文摘With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.
文摘5G-R is the main type of next-generation mobile communication system for railways,offering highly reliable broadband data transmission services for intelligent railway operations.In the light of meeting the bearing demands of the 5G-R network,a comprehensive data transmission platform is proposed.This platform enables unified accession for various data service systems and applies Software Defined Network(SDN)technology for dynamic routing selection and high-effective data forwarding.Based on shared key lightweight access authentication technology,two-way identity authentication is performed for mobile terminals and network-side devices,ensuring the legitimacy verification of heterogeneous terminals within the application domain.
基金supported by the National Natural Science Foundation of China“Research on Cross-sector Competition Effect and Regulatory Policy of Digital Platforms Based on Inter-platform Network Externalities”(Grant No.72103085).
文摘Data is a key asset for digital platforms,and mergers and acquisitions(M&As)are an important way for platform enterprises to acquire it.The types of data obtained from intra-industry and cross-sector M&As differ,as does the extent to which they interact within or between platforms.The impact of such data on corporate market performance is an important question to consider when selecting strategies for digital platform M&As.Based on our research on advertising-driven platforms,we developed a two-stage Hotelling game model for comparing the market performance effects of intra-industry M&As and cross-sector M&As for digital platforms.We carried out an empirical test using relevant data from advertising-driven digital platforms between 2009 and 2021,as well as a case study on Baidu’s M&A activities.Our research discovered that intra-industry M&As driven by“data economies of scale”and cross-sector M&As driven by“data economies of scope”are both beneficial to the market performance of platform enterprises.Intra-industry M&As have a more significant positive effect on the market performance of platform enterprises because the same types of data are easier to integrate and develop the“network effect of data scale”.From a data factor perspective,this paper reveals the inherent economic logic by which different types of M&As influence the market performance of digital platforms,as well as policymaking recommendations for all digital platforms to select M&A strategies based on data scale,data scope,and the network effect of data.
基金supported by the National Natural Science Foundation of China(Grant No.92044303)。
文摘Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of China’s Major Research Plan entitled“Fundamental Researches on the Formation and Response Mechanism of the Air Pollution Complex in China”(or the Plan)has funded 76 research projects to explore the causes of air pollution in China,and the key processes of air pollution in atmospheric physics and atmospheric chemistry.In order to summarize the abundant data from the Plan and exhibit the long-term impacts domestically and internationally,an integration project is responsible for collecting the various types of data generated by the 76 projects of the Plan.This project has classified and integrated these data,forming eight categories containing 258 datasets and 15 technical reports in total.The integration project has led to the successful establishment of the China Air Pollution Data Center(CAPDC)platform,providing storage,retrieval,and download services for the eight categories.This platform has distinct features including data visualization,related project information querying,and bilingual services in both English and Chinese,which allows for rapid searching and downloading of data and provides a solid foundation of data and support for future related research.Air pollution control in China,especially in the past decade,is undeniably a global exemplar,and this data center is the first in China to focus on research into the country’s air pollution complex.
文摘With the rapid development of information technology,smart teaching platforms have become important tools for higher education teaching reform.As a core course of computer science and technology-related majors in higher education,the data structure course lays a solid foundation for students’professional learning and plays an important role in promoting their future success in technology,research,and industry.This study conducts an in-depth analysis of the pain points faced by the data structure course,and explores a teaching reform and practice of integration of theory and practice based on the system application of a smart teaching platform before class,during class,and after class.The reform practice shows that this teaching mode improves students’learning initiative,learning motivation,and practical skills.Students not only achieved better results in knowledge mastery but also significantly improved in problem analysis and solution.
基金Noncommunicable Chronic Diseases-National Science and Technology Major Project(2023ZD0503906)。
文摘Background Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment.However,limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to pose significant barriers to clinical research progress.In response,our research team has embarked on the development of a specialized clinical research database for cardiology,thereby establishing a comprehensive digital platform that facilitates both clinical decision-making and research endeavors.Methods The database incorporated actual clinical data from patients who received treatment at the Cardiovascular Medicine Department of Chinese PLA General Hospital from 2012 to 2021.It included comprehensive data on patients'basic information,medical history,non-invasive imaging studies,laboratory test results,as well as peri-procedural information related to interventional surgeries,extracted from the Hospital Information System.Additionally,an innovative artificial intelligence(AI)-powered interactive follow-up system had been developed,ensuring that nearly all myocardial infarction patients received at least one post-discharge follow-up,thereby achieving comprehensive data management throughout the entire care continuum for highrisk patients.Results This database integrates extensive cross-sectional and longitudinal patient data,with a focus on higher-risk acute coronary syndrome patients.It achieves the integration of structured and unstructured clinical data,while innovatively incorporating AI and automatic speech recognition technologies to enhance data integration and workflow efficiency.It creates a comprehensive patient view,thereby improving diagnostic and follow-up quality,and provides high-quality data to support clinical research.Despite limitations in unstructured data standardization and biological sample integrity,the database's development is accompanied by ongoing optimization efforts.Conclusion The cardiovascular specialty clinical database is a comprehensive digital archive integrating clinical treatment and research,which facilitates the digital and intelligent transformation of clinical diagnosis and treatment processes.It supports clinical decision-making and offers data support and potential research directions for the specialized management of cardiovascular diseases.
文摘Nowadays, we experience an abundance of Internet of Things middleware solutions that make the sensors and the actuators are able to connect to the Internet. These solutions, referred to as platforms to gain a widespread adoption, have to meet the expectations of different players in the IoT ecosystem, including devices [1]. Low cost devices are easily able to connect wirelessly to the Internet, from handhelds to coffee machines, also known as Internet of Things (IoT). This research describes the methodology and the development process of creating an IoT platform. This paper also presents the architecture and implementation for the IoT platform. The goal of this research is to develop an analytics engine which can gather sensor data from different devices and provide the ability to gain meaningful information from IoT data and act on it using machine learning algorithms. The proposed system is introducing the use of a messaging system to improve the overall system performance as well as provide easy scalability.
基金supported by the Incubation Foundation for Special Disciplines of National Science Foundation of China (NSFC) (grant number: J0630966)Chinese Research Network on Special Environment and Disaster (CRENSED) of Ministry of Science and Technology of the People’s Republic of China (grant number:1Z2005DKA10600)the Knowledge Innovation Important Program of Chinese Academy of Sciences (Grant Number:NF105-SDB-1-21)
文摘The Data Platform of Resource and Environment—whose data mainly come from field observation stations,spatial observations,and internet service institutions—is the base of data analysis and model simulation in geoscience research in China.Among this integrated data platform,the tasks of the data platform of field observation stations are principally data collection,management,assimilation,and share service.Taking into consideration the distributing characteristics of the data sources and the service objects,the authors formulated the framework of the field observation stations' data platform based on the grid technology and designed its operating processes.The authors have further defined and analyzed the key functions and implementing techniques for each module.In a Linux operating system,validation tests for the data platform's function on data replication,data synchronization,and unified data service have been conducted under an environment that of the simulating field stations.
文摘This paper makes astudy on the interactive digital gener-alization,where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure,which are done by human andcomputer,respectively.And an inter-active map generalization environmentfor large scale topographic map is thendesigned and realized.This researchfocuses on:①the significance of re-searching an interactive map generali-zation environment,②the features oflarge scale topographic map and inter-active map generalization,③the con-struction of map generalization-orien-ted database platform.
基金The National Natural Science Foundation of China(No.72071039)the Foundation of China Scholarship Council(No.202106090197)。
文摘To obtain the platform s big data analytics support,manufacturers in the traditional retail channel must decide whether to use the direct online channel.A retail supply chain model and a direct online supply chain model are built,in which manufacturers design products alone in the retail channel,while the platform and manufacturer complete the product design in the direct online channel.These two models are analyzed using the game theoretical model and numerical simulation.The findings indicate that if the manufacturers design capabilities are not very high and the commission rate is not very low,the manufacturers will choose the direct online channel if the platform s technical efforts are within an interval.When the platform s technical efforts are exogenous,they positively influence the manufacturers decisions;however,in the endogenous case,the platform s effect on the manufacturers is reflected in the interaction of the commission rate and cost efficiency.The manufacturers and the platform should make synthetic effort decisions based on the manufacturer s development capabilities,the intensity of market competition,and the cost efficiency of the platform.
基金supported by NSF B55101680,NTIF B2090571,B2110140,SCUT x2rjD2116860,Y1080170,Y1090160,Y1100030,Y1100050,Y1110020 and S1010561121,G101056137
文摘"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.
文摘To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex multivariate statistical analysis, and low accuracy and difficulty in mechanical property prediction, an industrial data analysis platform for coiled tubing steel strips production has been preliminarily developed.As the premise and foundation of analysis, industrial data collection, storage, and utilization are realized by using multiple big data technologies.With Django as the agile development framework, data visualization and comprehensive analyses are achieved.The platform has functions including overview survey, stability analysis, comprehensive analysis(such as exploratory data analysis, correlation analysis, and multivariate statistics),precise steel strength prediction, and skin-passing process recommendation.The platform is helpful for production overviewing and prompt responding, laying a foundation for an in-depth understanding of product characteristics and improving product performance stability.
文摘The calculation results of the rolling force and torque model based on Orowan's differential equation numerical solution method do not fit with the industrial measurements very well.In particular,a quite large deviation on the torque model was found.On the basis of analyzing the shortcomings of the existing method,an improved rolling force and torque model algorithm aided by the Process Integrated Data Application System platform is proposed.Accordingly,the calculation accuracy of the rolling torque model is improved.The improved models are verified by 1711136 records of a data platform.The improved models are also based on Orowan's differential equation.Two coefficients,namely,friction factor and forward slip,are recognized as the crucial factors to be determined from industrial measurements to improve the accuracy.Therefore,the proposed method is a hybrid method that can be used to deeply understand the rolling process and improve the model's accuracy by combining traditional plastic mechanics and data-driving global optimization algorithms.This paper proposes a new approach to studying theoretical rolling deformation models powered by the industrial data platform.
文摘Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a software development framework acting as compiler, cross-project linker and data fetcher, which allow hot-swaps in order to compare various versions of software under test. The flexibility fostered by IRIS allowed modular exchange of software libraries among developers, making it a powerful development tool. The IRIS platform used input data ROOT-ntuples [3];however a new data model is sought, in line with the facilities offered by IRIS. The schematic of a possible new data structuring—as a user implemented object oriented data base, is presented.
文摘The so-called smart city is a new form of information technology that is achieved through the integration of the contemporary advanced big data technology,Internet of Things technology,cloud computing technology,and spatial geographic information.At present,the application of this technology is important for the urban construction,planning,and services as well as management.This technology also provides great convenience in these aspects,which has allowed the cities to develop and transform towards the direction of smart cities.Based on this situation,the construction of spatiotemporal big data platforms in smart cities was analyzed in this article,and this analysis may provide a reference for the construction and development of todays smart cities.