Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so...Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.展开更多
This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerge...This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerged cylindrical buoy.The system is modeled as a two-layer fluid with infinite horizontal extent and finite depth.The radiation problem is analyzed in the context of linear water waves.The fluid domain is divided into outer and inner zones,and mathematical solutions for the pitch radiating potential are derived for the corresponding boundary valve problem in these zones using the separation of variables approach.Using the matching eigenfunction expansion method,the unknown coefficients in the analytical expression of the radiation potentials are evaluated.The resulting radiation potential is then used to compute the added mass and damping coefficients.Several numerical results for the added mass and damping coefficients are investigated for numerous parameters,particularly the effects of the cylinder radius,the draft of the submerged cylinder,and the density proportion between the two fluid layers across different frequency ranges.The major findings are presented and discussed.展开更多
Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class at...Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.展开更多
BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To ...BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To develop an interpretable noninvasive early diagnostic model for PDAC using plasma extracellular vesicle long RNA(EvlRNA).METHODS The diagnostic model was constructed based on plasma EvlRNA data.During the process of establishing the model,EvlRNA-index was introduced,and four algorithms were adopted to calculate EvlRNA-index.After the model was successfully constructed,performance evaluation was conducted.A series of bioinformatics methods were adopted to explore the potential mechanism of EvlRNA-index as the input feature of the model.And the relationship between key characteristics and PDAC were explored at the single-cell level.RESULTS A novel interpretable machine learning framework was developed based on plasma EvlRNA.In this framework,a two-layer classifier was established.A new concept was proposed:EvlRNA-index.Based on EvlRNA-index,a cancer diagnostic model was established,and a good diagnostic effect was achieved.The accuracy of PDACandCPvsHealth-Probabilistic PCA Index-SVM(PDAC and chronic pancreatitis vs health-probabilistic principal component analysis index-support vector machine)(1-18)was 91.51%,with Mathew’s correlation coefficient 0.7760 and area under the curve 0.9560.In the second layer of the model,the accuracy of PDACvsCP-Probabilistic PCA Index-RF(PDAC vs chronic pancreatitis-probabilistic principal component analysis index-random forest)(2-17)was 93.83%,with Mathew’s correlation coefficient 0.8422 and area under the curve 0.9698.Forty-nine PDAC-related genes were identified,among which 16 were known,inferring that the remaining ones were also PDAC-related genes.CONCLUSION An interpretable two-layer machine learning framework was proposed for early diagnosis and prediction of PDAC based on plasma EvlRNA,providing new insights into the clinical value of EvlRNA.展开更多
In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapi...In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the oper...In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits.展开更多
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext...Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.展开更多
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Ba...Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.展开更多
In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIR...In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIRSTS)based on"cat-eye effect"was developed.The ADMWIRSTS mainly consists of both a light beam control subsystem and an infrared search and track subsystem.The light beam control subsystem uses an integrated opto-mechanical two-dimensional pointing mirror to realize the control function of the azimuth and pitch directions of the system,which can cover the whole airspace range of 360°×90°.The infrared search and track subsystem uses two mid-wave infrared cooled 640×512 focal plane detectors for co-aperture beam expanding,infrared and illumination laser beam combining,infrared search,and two-stage track opto-mechanical design.In this work,the system integration design and structural finite-element analysis were conducted,the search imaging and two-stage track imaging for external scenes were performed,and the active-detection technologies were experimentally verified in the laboratory.The experimental investigation results show that the system can realize the infrared search and track imaging,and the accurate identification and positioning of the mid-wave infrared guidance,or infrared detection system through the echo of the illumination laser.The aforementioned work has important technical significance and practical application value for the development of compactly-integrated high-precision infrared search and track,and laser suppression system,and has broad application prospects in the protection of equipment,assets and infrastructures.展开更多
An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-ste...An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range.展开更多
The Runge-Kutta optimiser(RUN)algorithm,renowned for its powerful optimisation capabilities,faces challenges in dealing with increasing complexity in real-world problems.Specifically,it shows deficiencies in terms of ...The Runge-Kutta optimiser(RUN)algorithm,renowned for its powerful optimisation capabilities,faces challenges in dealing with increasing complexity in real-world problems.Specifically,it shows deficiencies in terms of limited local exploration capabilities and less precise solutions.Therefore,this research aims to integrate the topological search(TS)mechanism with the gradient search rule(GSR)into the framework of RUN,introducing an enhanced algorithm called TGRUN to improve the performance of the original algorithm.The TS mechanism employs a circular topological scheme to conduct a thorough exploration of solution regions surrounding each solution,enabling a careful examination of valuable solution areas and enhancing the algorithm’s effectiveness in local exploration.To prevent the algorithm from becoming trapped in local optima,the GSR also integrates gradient descent principles to direct the algorithm in a wider investigation of the global solution space.This study conducted a serious of experiments on the IEEE CEC2017 comprehensive benchmark function to assess the enhanced effectiveness of TGRUN.Additionally,the evaluation includes real-world engineering design and feature selection problems serving as an additional test for assessing the optimisation capabilities of the algorithm.The validation outcomes indicate a significant improvement in the optimisation capabilities and solution accuracy of TGRUN.展开更多
The detection of small targets poses a significant challenge for infrared search and tracking (IRST) systems,as they must strike a delicate balance between accuracy and speed.In this paper,we propose a detection algor...The detection of small targets poses a significant challenge for infrared search and tracking (IRST) systems,as they must strike a delicate balance between accuracy and speed.In this paper,we propose a detection algorithm based on spatial attention density peaks searching (SADPS) and an adaptive window selection scheme.First,the difference-of-Gaussians (DoG) filter is introduced for preprocessing raw infrared images.Second,the image is processed by SADPS.Third,an adaptive window selection scheme is applied to obtain window templates for the target scale size.Then,the small target feature is used to enhance the target and suppress the background.Finally,the true targets are segmented through a threshold.The experimental results show that compared with the seven state-of-the-art small targets detection baseline algorithms,the proposed method not only has better detection accuracy,but also has reasonable time consumption.展开更多
The requirement for precise detection and recognition of target pedestrians in unprocessed real-world imagery drives the formulation of person search as an integrated technological framework that unifies pedestrian de...The requirement for precise detection and recognition of target pedestrians in unprocessed real-world imagery drives the formulation of person search as an integrated technological framework that unifies pedestrian detection and person re-identification(Re-ID).However,the inherent discrepancy between the optimization objectives of coarse-grained localization in pedestrian detection and fine-grained discriminative learning in Re-ID,combined with the substantial performance degradation of Re-ID during joint training caused by the Faster R-CNN-based branch,collectively constitutes a critical bottleneck for person search.In this work,we propose a cascaded person searchmodel(SeqXt)based on SeqNet and ConvNeXt that adopts a sequential end-to-end network as its core architecture,artfully integrates the design logic of the two-stepmethod and one-step method framework,and concurrently incorporates the two-step method’s advantage in efficient subtask handling while preserving the one-step method’s efficiency in end-toend training.Firstly,we utilize ConvNeXt-Base as the feature extraction module,which incorporates part of the design concept of Transformer,enhances the consideration of global context information,and boosts feature discrimination through an implicit self-attention mechanism.Secondly,we introduce prototype-guided normalization for calibrating the feature distribution,which leverages the archetype features of individual identities to calibrate the feature distribution and thereby prevents features from being overly inclined towards frequently occurring IDs,notably improving the intra-class compactness and inter-class separability of person identities.Finally,we put forward an innovative loss function named the Dynamic Online Instance Matching Loss Function(DOIM),which employs the hard sample assistantmethod to adaptively update the lookup table(LUT)and the circular queue(CQ)and aims to further enhance the distinctiveness of features between classes.Experimental results on the public datasets CUHK-SYSU and PRWand the private dataset UESTC-PS show that the proposed method achieves state-of-the-art results.展开更多
文摘Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.
基金supported by MHRD as researcher C.K.Neog received the MHRD Institute GATE scholarship from Govt.of India.
文摘This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerged cylindrical buoy.The system is modeled as a two-layer fluid with infinite horizontal extent and finite depth.The radiation problem is analyzed in the context of linear water waves.The fluid domain is divided into outer and inner zones,and mathematical solutions for the pitch radiating potential are derived for the corresponding boundary valve problem in these zones using the separation of variables approach.Using the matching eigenfunction expansion method,the unknown coefficients in the analytical expression of the radiation potentials are evaluated.The resulting radiation potential is then used to compute the added mass and damping coefficients.Several numerical results for the added mass and damping coefficients are investigated for numerous parameters,particularly the effects of the cylinder radius,the draft of the submerged cylinder,and the density proportion between the two fluid layers across different frequency ranges.The major findings are presented and discussed.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)—Innovative Human Resource Development for Local Intellectualization program grant funded by the Korea government(MSIT)(IITP-2025-RS-2022-00156334)in part by Liaoning Province Nature Fund Project(2024-BSLH-214).
文摘Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.
基金Supported by Talent Scientific Research Start-up Foundation of Wannan Medical College,No.WYRCQD2023045.
文摘BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To develop an interpretable noninvasive early diagnostic model for PDAC using plasma extracellular vesicle long RNA(EvlRNA).METHODS The diagnostic model was constructed based on plasma EvlRNA data.During the process of establishing the model,EvlRNA-index was introduced,and four algorithms were adopted to calculate EvlRNA-index.After the model was successfully constructed,performance evaluation was conducted.A series of bioinformatics methods were adopted to explore the potential mechanism of EvlRNA-index as the input feature of the model.And the relationship between key characteristics and PDAC were explored at the single-cell level.RESULTS A novel interpretable machine learning framework was developed based on plasma EvlRNA.In this framework,a two-layer classifier was established.A new concept was proposed:EvlRNA-index.Based on EvlRNA-index,a cancer diagnostic model was established,and a good diagnostic effect was achieved.The accuracy of PDACandCPvsHealth-Probabilistic PCA Index-SVM(PDAC and chronic pancreatitis vs health-probabilistic principal component analysis index-support vector machine)(1-18)was 91.51%,with Mathew’s correlation coefficient 0.7760 and area under the curve 0.9560.In the second layer of the model,the accuracy of PDACvsCP-Probabilistic PCA Index-RF(PDAC vs chronic pancreatitis-probabilistic principal component analysis index-random forest)(2-17)was 93.83%,with Mathew’s correlation coefficient 0.8422 and area under the curve 0.9698.Forty-nine PDAC-related genes were identified,among which 16 were known,inferring that the remaining ones were also PDAC-related genes.CONCLUSION An interpretable two-layer machine learning framework was proposed for early diagnosis and prediction of PDAC based on plasma EvlRNA,providing new insights into the clinical value of EvlRNA.
基金supported by the Basic Scientific Research Business Fund Project of Higher Education Institutions in Heilongjiang Province(145409601)the First Batch of Experimental Teaching and Teaching Laboratory Construction Research Projects in Heilongjiang Province(SJGZ20240038).
文摘In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
文摘In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits.
基金the University of Transport Technology under grant number DTTD2022-12.
文摘Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.
文摘Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.
基金Supported by the Fundamental Scientific Research Plan of China(JCKY2021130B033)。
文摘In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIRSTS)based on"cat-eye effect"was developed.The ADMWIRSTS mainly consists of both a light beam control subsystem and an infrared search and track subsystem.The light beam control subsystem uses an integrated opto-mechanical two-dimensional pointing mirror to realize the control function of the azimuth and pitch directions of the system,which can cover the whole airspace range of 360°×90°.The infrared search and track subsystem uses two mid-wave infrared cooled 640×512 focal plane detectors for co-aperture beam expanding,infrared and illumination laser beam combining,infrared search,and two-stage track opto-mechanical design.In this work,the system integration design and structural finite-element analysis were conducted,the search imaging and two-stage track imaging for external scenes were performed,and the active-detection technologies were experimentally verified in the laboratory.The experimental investigation results show that the system can realize the infrared search and track imaging,and the accurate identification and positioning of the mid-wave infrared guidance,or infrared detection system through the echo of the illumination laser.The aforementioned work has important technical significance and practical application value for the development of compactly-integrated high-precision infrared search and track,and laser suppression system,and has broad application prospects in the protection of equipment,assets and infrastructures.
基金National Key Research and Development Program of China(2022YFB2804401)。
文摘An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LTGS23E070001,LZ22F020005,LTGY24C060004National Natural Science Foundation of China,Grant/Award Numbers:62076185,62301367,62273263。
文摘The Runge-Kutta optimiser(RUN)algorithm,renowned for its powerful optimisation capabilities,faces challenges in dealing with increasing complexity in real-world problems.Specifically,it shows deficiencies in terms of limited local exploration capabilities and less precise solutions.Therefore,this research aims to integrate the topological search(TS)mechanism with the gradient search rule(GSR)into the framework of RUN,introducing an enhanced algorithm called TGRUN to improve the performance of the original algorithm.The TS mechanism employs a circular topological scheme to conduct a thorough exploration of solution regions surrounding each solution,enabling a careful examination of valuable solution areas and enhancing the algorithm’s effectiveness in local exploration.To prevent the algorithm from becoming trapped in local optima,the GSR also integrates gradient descent principles to direct the algorithm in a wider investigation of the global solution space.This study conducted a serious of experiments on the IEEE CEC2017 comprehensive benchmark function to assess the enhanced effectiveness of TGRUN.Additionally,the evaluation includes real-world engineering design and feature selection problems serving as an additional test for assessing the optimisation capabilities of the algorithm.The validation outcomes indicate a significant improvement in the optimisation capabilities and solution accuracy of TGRUN.
基金supported by the National 14th Five-Year Plan Preliminary Research Project (No.514010405-207)。
文摘The detection of small targets poses a significant challenge for infrared search and tracking (IRST) systems,as they must strike a delicate balance between accuracy and speed.In this paper,we propose a detection algorithm based on spatial attention density peaks searching (SADPS) and an adaptive window selection scheme.First,the difference-of-Gaussians (DoG) filter is introduced for preprocessing raw infrared images.Second,the image is processed by SADPS.Third,an adaptive window selection scheme is applied to obtain window templates for the target scale size.Then,the small target feature is used to enhance the target and suppress the background.Finally,the true targets are segmented through a threshold.The experimental results show that compared with the seven state-of-the-art small targets detection baseline algorithms,the proposed method not only has better detection accuracy,but also has reasonable time consumption.
基金supported by the major science and technology special projects of Xinjiang(No.2024B03041)the scientific and technological projects of Kashgar(No.KS2024024).
文摘The requirement for precise detection and recognition of target pedestrians in unprocessed real-world imagery drives the formulation of person search as an integrated technological framework that unifies pedestrian detection and person re-identification(Re-ID).However,the inherent discrepancy between the optimization objectives of coarse-grained localization in pedestrian detection and fine-grained discriminative learning in Re-ID,combined with the substantial performance degradation of Re-ID during joint training caused by the Faster R-CNN-based branch,collectively constitutes a critical bottleneck for person search.In this work,we propose a cascaded person searchmodel(SeqXt)based on SeqNet and ConvNeXt that adopts a sequential end-to-end network as its core architecture,artfully integrates the design logic of the two-stepmethod and one-step method framework,and concurrently incorporates the two-step method’s advantage in efficient subtask handling while preserving the one-step method’s efficiency in end-toend training.Firstly,we utilize ConvNeXt-Base as the feature extraction module,which incorporates part of the design concept of Transformer,enhances the consideration of global context information,and boosts feature discrimination through an implicit self-attention mechanism.Secondly,we introduce prototype-guided normalization for calibrating the feature distribution,which leverages the archetype features of individual identities to calibrate the feature distribution and thereby prevents features from being overly inclined towards frequently occurring IDs,notably improving the intra-class compactness and inter-class separability of person identities.Finally,we put forward an innovative loss function named the Dynamic Online Instance Matching Loss Function(DOIM),which employs the hard sample assistantmethod to adaptively update the lookup table(LUT)and the circular queue(CQ)and aims to further enhance the distinctiveness of features between classes.Experimental results on the public datasets CUHK-SYSU and PRWand the private dataset UESTC-PS show that the proposed method achieves state-of-the-art results.