期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Ecological Security Assessment,Prediction,and Zoning Management:An Integrated Analytical Framework
1
作者 Bo Nan Yujia Zhai +2 位作者 Mengmeng Wang Hongjie Wang Baoshan Cui 《Engineering》 2025年第6期238-250,共13页
Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospecti... Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospective ecological security assessments with future trend predictions and fine-scale targeted regulations remains inadequate,limiting effective ecological governance and sustainable regional development.Guided by Social-Economic-Natural Complex Ecosystems(SENCE)theory,this study proposes an analytical framework that integrates ecological security assessment,prediction,and zoning management.The Daqing River Basin,a typical river basin in the North China Plain,was selected as a case study.The results indicate that overall ecological security in the Daqing River Basin improved from a“Moderate”level to a“Relatively Safe”level between 2000 and 2020;however,spatial heterogeneity persisted,with higher ecological security in northwestern and eastern regions and lower ecological security in the central region.Approximately 62% of the Basin experienced an improvement in ecological security level,except in the major urban areas of Beijing,Tianjin,and Hebei,where ecological security deteriorated.From 2025 to 2040,the overall ecological security of the Daqing River Basin is expected to improve and remain at the“Relatively Safe”level.However,spatial heterogeneity will be further aggravated as the ecological security of major urban areas continues to deteriorate.Ecological security management zones and regulation strategies are proposed at the regional and county scales to emphasize integrated regulation for the entire basin and major urban areas.The proposed analytical framework provides valuable insights for advancing theoretical research on ecological security.The case study offers a practical reference for ecological security enhancement in river basins and other regions facing significant human-land conflicts. 展开更多
关键词 Ecological security Analytical framework Assessment prediction Zoning management
在线阅读 下载PDF
PAMPHLET:PAM Prediction HomoLogous-Enhancement Toolkit for precise PAM prediction in CRISPR-Cas systems
2
作者 Chen Qi Xuechun Shen +6 位作者 Baitao Li Chuan Liu Lei Huang Hongxia Lan Donglong Chen Yuan Jiang Dan Wang 《Journal of Genetics and Genomics》 2025年第2期258-268,共11页
CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identif... CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif(PAM)sequences.Due to the limitations of experimental methods,bioinformatics approaches have become essential.However,existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems,resulting in low accuracy.To address this,we develop PAMPHLET,a pipeline that uses homology searches to identify additional spacers,significantly increasing the number of spacers up to 18-fold.PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers.These predictions are further validated using the DocMF platform,which characterizes protein-DNA recognition patterns via next-generation sequencing.The high consistency between PAMPHLET predictions and DocMF results for Cas proteins demonstrates the potential of PAMPHLET to enhance PAM sequence prediction accuracy,expedite the discovery process,and accelerate the development of CRISPR tools. 展开更多
关键词 CRISPR-Cas Protospacer adjacentmotif Genome editing PAM prediction Computational framework
原文传递
Advancements in energetic metal-organic frameworks, alkali and alkaline earth metal salts, and transition metal complexes: Predictive models for detonation velocity, heat, and pressure
3
作者 Mohammad Hossein Keshavarz Nasser Hassanzadeh Mohammad Jafari 《Defence Technology(防务技术)》 2025年第7期96-112,共17页
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu... Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models. 展开更多
关键词 Metal-organic framework Alkali and alkaline earth metal salt Transition metal complexe Detonation performance Decomposition pathway predictive reliability
在线阅读 下载PDF
A Study on the Explainability of Thyroid Cancer Prediction:SHAP Values and Association-Rule Based Feature Integration Framework
4
作者 Sujithra Sankar S.Sathyalakshmi 《Computers, Materials & Continua》 SCIE EI 2024年第5期3111-3138,共28页
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroi... In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications. 展开更多
关键词 Explainable AI machine learning clinical decision support systems thyroid cancer association-rule based framework SHAP values classification and prediction
暂未订购
A fusion deep learning framework based on breast cancer grade prediction
5
作者 Weijian Tao Zufan Zhang +1 位作者 Xi Liu Maobin Yang 《Digital Communications and Networks》 CSCD 2024年第6期1782-1789,共8页
In breast cancer grading,the subtle differences between HE-stained pathological images and the insufficient number of data samples lead to grading inefficiency.With its rapid development,deep learning technology has b... In breast cancer grading,the subtle differences between HE-stained pathological images and the insufficient number of data samples lead to grading inefficiency.With its rapid development,deep learning technology has been widely used for automatic breast cancer grading based on pathological images.In this paper,we propose an integrated breast cancer grading framework based on a fusion deep learning model,which uses three different convolutional neural networks as submodels to extract feature information at different levels from pathological images.Then,the output features of each submodel are learned by the fusion network based on stacking to generate the final decision results.To validate the effectiveness and reliability of our proposed model,we perform dichotomous and multiclassification experiments on the Invasive Ductal Carcinoma(IDC)pathological image dataset and a generated dataset and compare its performance with those of the state-of-the-art models.The classification accuracy of the proposed fusion network is 93.8%,the recall is 93.5%,and the F1 score is 93.8%,which outperforms the state-of-the-art methods. 展开更多
关键词 Breast cancer Grade prediction Fusion framework Convolutional neural networks
在线阅读 下载PDF
Spectrum Prediction Based on GAN and Deep Transfer Learning:A Cross-Band Data Augmentation Framework 被引量:7
6
作者 Fandi Lin Jin Chen +3 位作者 Guoru Ding Yutao Jiao Jiachen Sun Haichao Wang 《China Communications》 SCIE CSCD 2021年第1期18-32,共15页
This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained mode... This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained model for prediction often cannot maintain a good performance when facing small amount of historical data of the new target frequency.Moreover,the cognitive radio equipment usually implements the dynamic spectrum access in real time which means the time to recollect the data of the new task frequency band and retrain the model is very limited.To address the above issues,we develop a crossband data augmentation framework for spectrum prediction by leveraging the recent advances of generative adversarial network(GAN)and deep transfer learning.Firstly,through the similarity measurement,we pre-train a GAN model using the historical data of the frequency band that is the most similar to the target frequency band.Then,through the data augmentation by feeding the small amount of the target data into the pre-trained GAN,temporal-spectral residual network is further trained using deep transfer learning and the generated data with high similarity from GAN.Finally,experiment results demonstrate the effectiveness of the proposed framework. 展开更多
关键词 cognitive radio cross-band spectrum prediction deep transfer learning generative adversarial network cross-band data augmentation framework
在线阅读 下载PDF
User Churn Prediction Hierarchical Model Based on Graph Attention Convolutional Neural Networks
7
作者 Mei Miao Tang Miao Zhou Long 《China Communications》 SCIE CSCD 2024年第7期169-185,共17页
The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications ... The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses. 展开更多
关键词 cloud-edge cooperative framework GAT-CNN self-attention and graph convolution models subscriber churn prediction
在线阅读 下载PDF
Time-series gas prediction model using LS-SVR within a Bayesian framework 被引量:8
8
作者 Qiao Meiying Ma Xiaoping +1 位作者 Lan ]ianyi Wang Ying 《Mining Science and Technology》 EI CAS 2011年第1期153-157,共5页
The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework t... The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast. 展开更多
关键词 Bayesian framework LS-SVR Time-series Gas prediction
在线阅读 下载PDF
User Behavior Traffic Analysis Using a Simplified Memory-Prediction Framework 被引量:1
9
作者 Rahmat Budiarto Ahmad A.Alqarni +3 位作者 Mohammed YAlzahrani Muhammad Fermi Pasha Mohamed FazilMohamed Firdhous Deris Stiawan 《Computers, Materials & Continua》 SCIE EI 2022年第2期2679-2698,共20页
As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents cause... As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents caused by insiders or malicious software(malware)in real-time.Failing to do so may cause a serious loss of reputation as well as business.At the same time,modern network traffic has dynamic patterns,high complexity,and large volumes that make it more difficult to detect malware early.The ability to learn tasks sequentially is crucial to the development of artificial intelligence.Existing neurogenetic computation models with deep-learning techniques are able to detect complex patterns;however,the models have limitations,including catastrophic forgetfulness,and require intensive computational resources.As defense systems using deep-learning models require more time to learn new traffic patterns,they cannot perform fully online(on-the-fly)learning.Hence,an intelligent attack/malware detection system with on-the-fly learning capability is required.For this paper,a memory-prediction framework was adopted,and a simplified single cell assembled sequential hierarchical memory(s.SCASHM)model instead of the hierarchical temporal memory(HTM)model is proposed to speed up learning convergence to achieve onthe-fly learning.The s.SCASHM consists of a Single Neuronal Cell(SNC)model and a simplified Sequential Hierarchical Superset(SHS)platform.The s.SCASHMis implemented as the prediction engine of a user behavior analysis tool to detect insider attacks/anomalies.The experimental results show that the proposed memory model can predict users’traffic behavior with accuracy level ranging from 72%to 83%while performing on-the-fly learning. 展开更多
关键词 Machine learning memory prediction framework insider attacks user behavior analytics
在线阅读 下载PDF
Customer Churn Prediction Framework of Inclusive Finance Based on Blockchain Smart Contract
10
作者 Fang Yu Wenbin Bi +2 位作者 Ning Cao Hongjun Li Russell Higgs 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1-17,共17页
In view of the fact that the prediction effect of influential financial customer churn in the Internet of Things environment is difficult to achieve the expectation,at the smart contract level of the blockchain,a cust... In view of the fact that the prediction effect of influential financial customer churn in the Internet of Things environment is difficult to achieve the expectation,at the smart contract level of the blockchain,a customer churn prediction framework based on situational awareness and integrating customer attributes,the impact of project hotspots on customer interests,and customer satisfaction with the project has been built.This framework introduces the background factors in the financial customer environment,and further discusses the relationship between customers,the background of customers and the characteristics of pre-lost customers.The improved Singular Value Decomposition(SVD)algorithm and the time decay function are used to optimize the search and analysis of the characteristics of pre-lost customers,and the key index combination is screened to obtain the data of potential lost customers.The framework will change with time according to the customer’s interest,adding the time factor to the customer churn prediction,and improving the dimensionality reduction and prediction generalization ability in feature selection.Logistic regression,naive Bayes and decision tree are used to establish a prediction model in the experiment,and it is compared with the financial customer churn prediction framework under situational awareness.The prediction results of the framework are evaluated from four aspects:accuracy,accuracy,recall rate and F-measure.The experimental results show that the context-aware customer churn prediction framework can be effectively applied to predict customer churn trends,so as to obtain potential customer data with high churn probability,and then these data can be transmitted to the company’s customer service department in time,so as to improve customer churn rate and customer loyalty through accurate service. 展开更多
关键词 Contextual awareness customer churn prediction framework dimensionality reduction generalization ability
在线阅读 下载PDF
Traffic prediction using a self-adjusted evolutionary neural network 被引量:2
11
作者 Shiva Rahimipour Rayehe Moeinfar Mehdi Hashemi 《Journal of Modern Transportation》 2019年第4期306-316,共11页
Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffi... Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffic prediction.NNs'dependency on parameter setting is the major challenge in using them as a predictor.Given the fact that the best combination of NN parameters results in the minimum error of predicted output,the main problem is NN optimization.So,it is viable to set the best combination of the parameters according to a specific traffic behavior.On the other hand,an automatic method—which is applicable in general cases—is strongly desired to set appropriate parameters for neural networks.This paper defines a self-adjusted NN using the non-dominated sorting genetic algorithm II(NSGA-II)as a multi-objective optimizer for short-term prediction.NSGA-II is used to optimize the number of neurons in the first and second layers of the NN,learning ratio and slope of the activation function.This model addresses the challenge of optimizing a multi-output NN in a self-adjusted way.Performance of the developed network is evaluated by application to both univariate and multivariate traffic flow data from an urban highway.Results are analyzed based on the performance measures,showing that the genetic algorithm tunes the NN as well without any manually pre-adjustment.The achieved prediction accuracy is calculated with multiple measures such as the root mean square error(RMSE),and the RMSE value is 10 and 12 in the best configuration of the proposed model for single and multi-step-ahead traffic flow prediction,respectively. 展开更多
关键词 TRAFFIC prediction NEURAL NETWORKS GENETIC algorithm Self-adjusted framework
在线阅读 下载PDF
Object Identification in Dynamic Images Based on the Memory-Prediction Theory of Brain Function 被引量:3
12
作者 Marek Bundzel Shuji Hashimoto 《Journal of Intelligent Learning Systems and Applications》 2010年第4期212-220,共9页
In 2004, Jeff Hawkins presented a memory-prediction theory of brain function, and later used it to create the Hierar-chical Temporal Memory model. Several of the concepts described in the theory are applied here in a ... In 2004, Jeff Hawkins presented a memory-prediction theory of brain function, and later used it to create the Hierar-chical Temporal Memory model. Several of the concepts described in the theory are applied here in a computer vision system for a mobile robot application. The aim was to produce a system enabling a mobile robot to explore its envi-ronment and recognize different types of objects without human supervision. The operator has means to assign names to the identified objects of interest. The system presented here works with time ordered sequences of images. It utilizes a tree structure of connected computational nodes similar to Hierarchical Temporal Memory and memorizes frequent sequences of events. The structure of the proposed system and the algorithms involved are explained. A brief survey of the existing algorithms applicable in the system is provided and future applications are outlined. Problems that can arise when the robot’s velocity changes are listed, and a solution is proposed. The proposed system was tested on a sequence of images recorded by two parallel cameras moving in a real world environment. Results for mono- and ste-reo vision experiments are presented. 展开更多
关键词 MEMORY prediction framework Mobile ROBOTICS COMPUTER VISION UNSUPERVISED Learning
在线阅读 下载PDF
A Model-Agnostic Hierarchical Framework Towards Trajectory Prediction
13
作者 Tang-Wen Qian Yuan Wang +4 位作者 Yong-Jun Xu Zhao Zhang Lin Wu Qiang Qiu Fei Wang 《Journal of Computer Science & Technology》 2025年第2期322-339,共18页
Predicting the future trajectories of multiple agents is essential for various applications in real life,such as surveillance systems,autonomous driving,and social robots.The trajectory prediction task is influenced b... Predicting the future trajectories of multiple agents is essential for various applications in real life,such as surveillance systems,autonomous driving,and social robots.The trajectory prediction task is influenced by many factors,including the individual historical trajectory,interactions between agents,and the fuzzy nature of the observed agents’motion.While existing methods have made great progress on the topic of trajectory prediction,they treat all the information uniformly,which limits the effectiveness of information utilization.To this end,in this paper,we propose and utilize a model-agnostic framework to regard all the information in a two-level hierarchical view.Particularly,the first-level view is the inter-trajectory view.In this level,we observe that the difficulty in predicting different trajectory samples varies.We define trajectory difficulty and train the proposed framework in an“easy-to-hard”schema.The second-level view is the intra-trajectory level.We find the influencing factors for a particular trajectory can be divided into two parts.The first part is global features,which keep stable within a trajectory,i.e.,the expected destination.The second part is local features,which change over time,i.e.,the current position.We believe that the two types of information should be handled in different ways.The hierarchical view is beneficial to take full advantage of the information in a fine-grained way.Experimental results validate the effectiveness of the proposed model-agnostic framework. 展开更多
关键词 spatial-temporal data mining trajectory prediction hierarchical framework model-agnostic
原文传递
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
14
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE LONG and SHORT-TERM MEMORY Network Keras DEEP Learning framework Quality prediction
原文传递
An End-to-End Machine Learning Framework for Predicting Common Geriatric Diseases
15
作者 Jian Guo Yu Han +2 位作者 Fan Xu Jiru Deng Zhe Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期209-218,共10页
Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile... Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile,applications developed by using the above technologies make it possible to predict the risk of age-related diseases early,which can give caregivers time to intervene and reduce the risk,potentially improving the health span of the elderly.However,the popularity of these applications is still limited for several reasons.For example,many older people are unable or unwilling to use mobile applications or devices(e.g.smartphones)because they are relatively complex operations or time-consuming for older people.In this work,we design and implement an end-to-end framework and integrate it with the WeChat platform to make it easily accessible to elders.In this work,multifactorial geriatric assessment data can be collected.Then,stacked machine learning models are trained to assess and predict the incidence of common diseases in the elderly.Experimental results show that our framework can not only provide more accurate prediction(precision:0.8713,recall:0.8212)for several common elderly diseases,but also very low timeconsuming(28.6 s)within a workflow compared to some existing similar applications. 展开更多
关键词 predicting geriatric diseases machine learning end-to-end framework
在线阅读 下载PDF
An Improved Machine Learning Technique with Effective Heart Disease Prediction System
16
作者 Mohammad Tabrez Quasim Saad Alhuwaimel +4 位作者 Asadullah Shaikh Yousef Asiri Khairan Rajab Rihem Farkh Khaled Al Jaloud 《Computers, Materials & Continua》 SCIE EI 2021年第12期4169-4181,共13页
Heart disease is the leading cause of death worldwide.Predicting heart disease is challenging because it requires substantial experience and knowledge.Several research studies have found that the diagnostic accuracy o... Heart disease is the leading cause of death worldwide.Predicting heart disease is challenging because it requires substantial experience and knowledge.Several research studies have found that the diagnostic accuracy of heart disease is low.The coronary heart disorder determines the state that influences the heart valves,causing heart disease.Two indications of coronary heart disorder are strep throat with a red persistent skin rash,and a sore throat covered by tonsils or strep throat.This work focuses on a hybrid machine learning algorithm that helps predict heart attacks and arterial stiffness.At first,we achieved the component perception measured by using a hybrid cuckoo search particle swarm optimization(CSPSO)algorithm.With this perception measure,characterization and accuracy were improved,while the execution time of the proposed model was decreased.The CSPSO-deep recurrent neural network algorithm resolved issues that state-of-the-art methods face.Our proposed method offers an illustrative framework that helps predict heart attacks with high accuracy.The proposed technique demonstrates the model accuracy,which reached 0.97 with the applied dataset. 展开更多
关键词 Machine learning deep recurrent neural network effective heart disease prediction framework
在线阅读 下载PDF
Development of a Framework for Equipment Health Management in the Mining Industries in Zambia
17
作者 Tobias Njobvu Terence Malama 《World Journal of Engineering and Technology》 2024年第3期665-694,共30页
The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the... The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the industry’s needs. Using surveys, interviews, and on-site visits at eight major mining companies, we identified significant variations in maintenance strategies, CMMS usage, and reliability engineering. The EMMF prioritizes predictive maintenance, efficient CMMS implementation, ongoing training, and robust reliability engineering to shift from reactive to proactive maintenance. We recommend adopting continuous improvement practices and data-driven decision-making based on performance metrics, with a phased EMMF implementation aligning maintenance with strategic business objectives. This framework is poised to enhance operational efficiency, equipment reliability, and safety, fostering sustainable growth in the Zambian mining sector. 展开更多
关键词 Equipment Maintenance Management framework (EMMF) Computerized Maintenance Management System (CMMS) Preventive Maintenance predictive Maintenance Data Analytics
在线阅读 下载PDF
基于梯度提升决策树算法的电力工程造价预测模型 被引量:3
18
作者 邵帅 赵祥 +2 位作者 敖慧凝 柳禾丰 王冬 《沈阳工业大学学报》 北大核心 2025年第3期302-308,共7页
[目的]电力工程造价预测在电网企业资源优化、财务稳定、风险管理、效率提升、项目决策、政策制定、市场秩序维护和投资者决策等方面具有重要意义。针对传统预测方法综合性能较差的问题,并考虑电力工程造价数据的小样本特性,提出了一种... [目的]电力工程造价预测在电网企业资源优化、财务稳定、风险管理、效率提升、项目决策、政策制定、市场秩序维护和投资者决策等方面具有重要意义。针对传统预测方法综合性能较差的问题,并考虑电力工程造价数据的小样本特性,提出了一种基于梯度提升决策树(gradient boosting decision tree,GBDT)的预测模型,通过优化训练过程中的残差,显著提升预测精度。[方法]从自然环境和技术因素出发,深入分析了电力工程造价的影响因子,筛选出11个影响电力工程造价的关键变量。通过数据清洗、特征编码和对数变换,构建适配GBDT模型的特征工程。采用Optuna框架进行超参数调优,并利用5折交叉验证法评估模型性能。模型优化以拟合优度作为评价指标,迭代寻找最优超参数,直至满足预测精度要求或达到最大迭代次数,最终建立结合Optuna框架的梯度提升决策树预测模型。以某地区变电工程造价数据为例,90%的数据样本作为训练集和验证集,10%的数据样本作为测试集,对比分析随机森林、神经网络、GBDT和结合Optuna的GBDT模型的预测效果,通过拟合优度与均方根误差进行性能评估。[结果]实验结果显示,结合Optuna的GBDT模型预测效果优于随机森林、神经网络及GBDT算法,预测值在真实值的±10元/kVA区间浮动。在验证集上,拟合优度为0.8923,均方根误差为8.01;在测试集上,拟合优度为0.8866,均方根误差为8.09。[结论]基于GBDT的电力工程造价预测模型能够精准预测电力工程造价,相较传统方法具有更高预测精度,尤其适用于电力工程造价类的小样本数据集。结合Optuna框架进行超参数调优,进一步提升了预测效果。未来研究将引入更多样本数据,并结合神经网络算法,探索更优的预测方案,助力电网企业实现高效运营与良性发展。 展开更多
关键词 电力工程 造价预测 梯度提升决策树 残差优化 对数变换 影响因子 特征工程 Optuna框架
在线阅读 下载PDF
融合多源异构数据的ICO欺诈预测与可解释分析模型 被引量:3
19
作者 卢加荣 廖彬 +1 位作者 刘怡 陈海龙 《计算机应用研究》 北大核心 2025年第2期357-364,共8页
为了解决首次代币发行(ICO)欺诈检测研究中存在的特征建模单一、模型缺乏可解释性等问题,提出一种融合多源异构数据的ICO欺诈预测和可解释分析模型IICOFP。首先,融合ICO项目基本信息、评级分数、社交媒体等多源异构数据,通过Lasso特征... 为了解决首次代币发行(ICO)欺诈检测研究中存在的特征建模单一、模型缺乏可解释性等问题,提出一种融合多源异构数据的ICO欺诈预测和可解释分析模型IICOFP。首先,融合ICO项目基本信息、评级分数、社交媒体等多源异构数据,通过Lasso特征选择和Tomek-Link欠采样更有效地实现对ICO的特征建模;其次,基于GBDT算法训练ICO欺诈预测模型,并引入SHAP框架从多个角度分析欺诈型ICO的影响因素,有力增强模型的可解释性。实验结果表明,该模型的准确率、精确率、召回率、F 1分数和AUC值分别达到87.76%、85.37%、90.52%、87.87%和87.82%,各项性能比已有的最佳模型提高了约2%~10%,验证了融合多源异构数据进行特征建模在ICO欺诈预测中的关键作用(实验数据及代码:https://github.com/Lujiarong1203/IICOFP)。 展开更多
关键词 首次代币发行(ICO) 欺诈预测 GBDT模型 SHAP框架 可解释性
在线阅读 下载PDF
战略情报预警预测智能化方法发展
20
作者 刘鑫 王侃 +2 位作者 戴礼灿 曹开臣 王良刚 《现代防御技术》 北大核心 2025年第4期36-49,共14页
系统性探讨了国内外战略情报预警预测相关概念内涵及其演变过程,给出了契合新时期我国情与军情的战略情报预警预测定义。针对预警预测要求与活动特点,提出了战略情报预警预测的基本环节与流程框架,归纳总结了实施战略情报预警预测的认... 系统性探讨了国内外战略情报预警预测相关概念内涵及其演变过程,给出了契合新时期我国情与军情的战略情报预警预测定义。针对预警预测要求与活动特点,提出了战略情报预警预测的基本环节与流程框架,归纳总结了实施战略情报预警预测的认知驱动类和数据驱动类智能化方法的基本思想和主要算法模型,能为战略情报分析领域研究人员开展研究提供工具选择、方法途径等方面的指导与参考。认知驱动类方法有可解释性和交互性方面的优势,数据驱动类方法在大规模数据处理效率方面更佳,两者结合在人机协同式的复杂战略情报预警预测分析任务中能发挥更好的效能。未来上述智能化方法将重点解决人机认知差异性度量、异构知识关联融合、弱隐微线索挖掘、证据链印证闭环等方面的问题,以满足预警预测领域的全面性、准确性、可信度等要求。 展开更多
关键词 战略情报 预警预测概念 预警预测流程 智能化方法 求解框架
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部