Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospecti...Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospective ecological security assessments with future trend predictions and fine-scale targeted regulations remains inadequate,limiting effective ecological governance and sustainable regional development.Guided by Social-Economic-Natural Complex Ecosystems(SENCE)theory,this study proposes an analytical framework that integrates ecological security assessment,prediction,and zoning management.The Daqing River Basin,a typical river basin in the North China Plain,was selected as a case study.The results indicate that overall ecological security in the Daqing River Basin improved from a“Moderate”level to a“Relatively Safe”level between 2000 and 2020;however,spatial heterogeneity persisted,with higher ecological security in northwestern and eastern regions and lower ecological security in the central region.Approximately 62% of the Basin experienced an improvement in ecological security level,except in the major urban areas of Beijing,Tianjin,and Hebei,where ecological security deteriorated.From 2025 to 2040,the overall ecological security of the Daqing River Basin is expected to improve and remain at the“Relatively Safe”level.However,spatial heterogeneity will be further aggravated as the ecological security of major urban areas continues to deteriorate.Ecological security management zones and regulation strategies are proposed at the regional and county scales to emphasize integrated regulation for the entire basin and major urban areas.The proposed analytical framework provides valuable insights for advancing theoretical research on ecological security.The case study offers a practical reference for ecological security enhancement in river basins and other regions facing significant human-land conflicts.展开更多
CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identif...CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif(PAM)sequences.Due to the limitations of experimental methods,bioinformatics approaches have become essential.However,existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems,resulting in low accuracy.To address this,we develop PAMPHLET,a pipeline that uses homology searches to identify additional spacers,significantly increasing the number of spacers up to 18-fold.PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers.These predictions are further validated using the DocMF platform,which characterizes protein-DNA recognition patterns via next-generation sequencing.The high consistency between PAMPHLET predictions and DocMF results for Cas proteins demonstrates the potential of PAMPHLET to enhance PAM sequence prediction accuracy,expedite the discovery process,and accelerate the development of CRISPR tools.展开更多
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroi...In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.展开更多
In breast cancer grading,the subtle differences between HE-stained pathological images and the insufficient number of data samples lead to grading inefficiency.With its rapid development,deep learning technology has b...In breast cancer grading,the subtle differences between HE-stained pathological images and the insufficient number of data samples lead to grading inefficiency.With its rapid development,deep learning technology has been widely used for automatic breast cancer grading based on pathological images.In this paper,we propose an integrated breast cancer grading framework based on a fusion deep learning model,which uses three different convolutional neural networks as submodels to extract feature information at different levels from pathological images.Then,the output features of each submodel are learned by the fusion network based on stacking to generate the final decision results.To validate the effectiveness and reliability of our proposed model,we perform dichotomous and multiclassification experiments on the Invasive Ductal Carcinoma(IDC)pathological image dataset and a generated dataset and compare its performance with those of the state-of-the-art models.The classification accuracy of the proposed fusion network is 93.8%,the recall is 93.5%,and the F1 score is 93.8%,which outperforms the state-of-the-art methods.展开更多
This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained mode...This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained model for prediction often cannot maintain a good performance when facing small amount of historical data of the new target frequency.Moreover,the cognitive radio equipment usually implements the dynamic spectrum access in real time which means the time to recollect the data of the new task frequency band and retrain the model is very limited.To address the above issues,we develop a crossband data augmentation framework for spectrum prediction by leveraging the recent advances of generative adversarial network(GAN)and deep transfer learning.Firstly,through the similarity measurement,we pre-train a GAN model using the historical data of the frequency band that is the most similar to the target frequency band.Then,through the data augmentation by feeding the small amount of the target data into the pre-trained GAN,temporal-spectral residual network is further trained using deep transfer learning and the generated data with high similarity from GAN.Finally,experiment results demonstrate the effectiveness of the proposed framework.展开更多
The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications ...The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.展开更多
The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework t...The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast.展开更多
As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents cause...As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents caused by insiders or malicious software(malware)in real-time.Failing to do so may cause a serious loss of reputation as well as business.At the same time,modern network traffic has dynamic patterns,high complexity,and large volumes that make it more difficult to detect malware early.The ability to learn tasks sequentially is crucial to the development of artificial intelligence.Existing neurogenetic computation models with deep-learning techniques are able to detect complex patterns;however,the models have limitations,including catastrophic forgetfulness,and require intensive computational resources.As defense systems using deep-learning models require more time to learn new traffic patterns,they cannot perform fully online(on-the-fly)learning.Hence,an intelligent attack/malware detection system with on-the-fly learning capability is required.For this paper,a memory-prediction framework was adopted,and a simplified single cell assembled sequential hierarchical memory(s.SCASHM)model instead of the hierarchical temporal memory(HTM)model is proposed to speed up learning convergence to achieve onthe-fly learning.The s.SCASHM consists of a Single Neuronal Cell(SNC)model and a simplified Sequential Hierarchical Superset(SHS)platform.The s.SCASHMis implemented as the prediction engine of a user behavior analysis tool to detect insider attacks/anomalies.The experimental results show that the proposed memory model can predict users’traffic behavior with accuracy level ranging from 72%to 83%while performing on-the-fly learning.展开更多
In view of the fact that the prediction effect of influential financial customer churn in the Internet of Things environment is difficult to achieve the expectation,at the smart contract level of the blockchain,a cust...In view of the fact that the prediction effect of influential financial customer churn in the Internet of Things environment is difficult to achieve the expectation,at the smart contract level of the blockchain,a customer churn prediction framework based on situational awareness and integrating customer attributes,the impact of project hotspots on customer interests,and customer satisfaction with the project has been built.This framework introduces the background factors in the financial customer environment,and further discusses the relationship between customers,the background of customers and the characteristics of pre-lost customers.The improved Singular Value Decomposition(SVD)algorithm and the time decay function are used to optimize the search and analysis of the characteristics of pre-lost customers,and the key index combination is screened to obtain the data of potential lost customers.The framework will change with time according to the customer’s interest,adding the time factor to the customer churn prediction,and improving the dimensionality reduction and prediction generalization ability in feature selection.Logistic regression,naive Bayes and decision tree are used to establish a prediction model in the experiment,and it is compared with the financial customer churn prediction framework under situational awareness.The prediction results of the framework are evaluated from four aspects:accuracy,accuracy,recall rate and F-measure.The experimental results show that the context-aware customer churn prediction framework can be effectively applied to predict customer churn trends,so as to obtain potential customer data with high churn probability,and then these data can be transmitted to the company’s customer service department in time,so as to improve customer churn rate and customer loyalty through accurate service.展开更多
Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffi...Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffic prediction.NNs'dependency on parameter setting is the major challenge in using them as a predictor.Given the fact that the best combination of NN parameters results in the minimum error of predicted output,the main problem is NN optimization.So,it is viable to set the best combination of the parameters according to a specific traffic behavior.On the other hand,an automatic method—which is applicable in general cases—is strongly desired to set appropriate parameters for neural networks.This paper defines a self-adjusted NN using the non-dominated sorting genetic algorithm II(NSGA-II)as a multi-objective optimizer for short-term prediction.NSGA-II is used to optimize the number of neurons in the first and second layers of the NN,learning ratio and slope of the activation function.This model addresses the challenge of optimizing a multi-output NN in a self-adjusted way.Performance of the developed network is evaluated by application to both univariate and multivariate traffic flow data from an urban highway.Results are analyzed based on the performance measures,showing that the genetic algorithm tunes the NN as well without any manually pre-adjustment.The achieved prediction accuracy is calculated with multiple measures such as the root mean square error(RMSE),and the RMSE value is 10 and 12 in the best configuration of the proposed model for single and multi-step-ahead traffic flow prediction,respectively.展开更多
In 2004, Jeff Hawkins presented a memory-prediction theory of brain function, and later used it to create the Hierar-chical Temporal Memory model. Several of the concepts described in the theory are applied here in a ...In 2004, Jeff Hawkins presented a memory-prediction theory of brain function, and later used it to create the Hierar-chical Temporal Memory model. Several of the concepts described in the theory are applied here in a computer vision system for a mobile robot application. The aim was to produce a system enabling a mobile robot to explore its envi-ronment and recognize different types of objects without human supervision. The operator has means to assign names to the identified objects of interest. The system presented here works with time ordered sequences of images. It utilizes a tree structure of connected computational nodes similar to Hierarchical Temporal Memory and memorizes frequent sequences of events. The structure of the proposed system and the algorithms involved are explained. A brief survey of the existing algorithms applicable in the system is provided and future applications are outlined. Problems that can arise when the robot’s velocity changes are listed, and a solution is proposed. The proposed system was tested on a sequence of images recorded by two parallel cameras moving in a real world environment. Results for mono- and ste-reo vision experiments are presented.展开更多
Predicting the future trajectories of multiple agents is essential for various applications in real life,such as surveillance systems,autonomous driving,and social robots.The trajectory prediction task is influenced b...Predicting the future trajectories of multiple agents is essential for various applications in real life,such as surveillance systems,autonomous driving,and social robots.The trajectory prediction task is influenced by many factors,including the individual historical trajectory,interactions between agents,and the fuzzy nature of the observed agents’motion.While existing methods have made great progress on the topic of trajectory prediction,they treat all the information uniformly,which limits the effectiveness of information utilization.To this end,in this paper,we propose and utilize a model-agnostic framework to regard all the information in a two-level hierarchical view.Particularly,the first-level view is the inter-trajectory view.In this level,we observe that the difficulty in predicting different trajectory samples varies.We define trajectory difficulty and train the proposed framework in an“easy-to-hard”schema.The second-level view is the intra-trajectory level.We find the influencing factors for a particular trajectory can be divided into two parts.The first part is global features,which keep stable within a trajectory,i.e.,the expected destination.The second part is local features,which change over time,i.e.,the current position.We believe that the two types of information should be handled in different ways.The hierarchical view is beneficial to take full advantage of the information in a fine-grained way.Experimental results validate the effectiveness of the proposed model-agnostic framework.展开更多
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par...The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.展开更多
Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile...Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile,applications developed by using the above technologies make it possible to predict the risk of age-related diseases early,which can give caregivers time to intervene and reduce the risk,potentially improving the health span of the elderly.However,the popularity of these applications is still limited for several reasons.For example,many older people are unable or unwilling to use mobile applications or devices(e.g.smartphones)because they are relatively complex operations or time-consuming for older people.In this work,we design and implement an end-to-end framework and integrate it with the WeChat platform to make it easily accessible to elders.In this work,multifactorial geriatric assessment data can be collected.Then,stacked machine learning models are trained to assess and predict the incidence of common diseases in the elderly.Experimental results show that our framework can not only provide more accurate prediction(precision:0.8713,recall:0.8212)for several common elderly diseases,but also very low timeconsuming(28.6 s)within a workflow compared to some existing similar applications.展开更多
Heart disease is the leading cause of death worldwide.Predicting heart disease is challenging because it requires substantial experience and knowledge.Several research studies have found that the diagnostic accuracy o...Heart disease is the leading cause of death worldwide.Predicting heart disease is challenging because it requires substantial experience and knowledge.Several research studies have found that the diagnostic accuracy of heart disease is low.The coronary heart disorder determines the state that influences the heart valves,causing heart disease.Two indications of coronary heart disorder are strep throat with a red persistent skin rash,and a sore throat covered by tonsils or strep throat.This work focuses on a hybrid machine learning algorithm that helps predict heart attacks and arterial stiffness.At first,we achieved the component perception measured by using a hybrid cuckoo search particle swarm optimization(CSPSO)algorithm.With this perception measure,characterization and accuracy were improved,while the execution time of the proposed model was decreased.The CSPSO-deep recurrent neural network algorithm resolved issues that state-of-the-art methods face.Our proposed method offers an illustrative framework that helps predict heart attacks with high accuracy.The proposed technique demonstrates the model accuracy,which reached 0.97 with the applied dataset.展开更多
The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the...The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the industry’s needs. Using surveys, interviews, and on-site visits at eight major mining companies, we identified significant variations in maintenance strategies, CMMS usage, and reliability engineering. The EMMF prioritizes predictive maintenance, efficient CMMS implementation, ongoing training, and robust reliability engineering to shift from reactive to proactive maintenance. We recommend adopting continuous improvement practices and data-driven decision-making based on performance metrics, with a phased EMMF implementation aligning maintenance with strategic business objectives. This framework is poised to enhance operational efficiency, equipment reliability, and safety, fostering sustainable growth in the Zambian mining sector.展开更多
基金supported by the project of the National Natural Science Foundation of China(42330705).
文摘Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospective ecological security assessments with future trend predictions and fine-scale targeted regulations remains inadequate,limiting effective ecological governance and sustainable regional development.Guided by Social-Economic-Natural Complex Ecosystems(SENCE)theory,this study proposes an analytical framework that integrates ecological security assessment,prediction,and zoning management.The Daqing River Basin,a typical river basin in the North China Plain,was selected as a case study.The results indicate that overall ecological security in the Daqing River Basin improved from a“Moderate”level to a“Relatively Safe”level between 2000 and 2020;however,spatial heterogeneity persisted,with higher ecological security in northwestern and eastern regions and lower ecological security in the central region.Approximately 62% of the Basin experienced an improvement in ecological security level,except in the major urban areas of Beijing,Tianjin,and Hebei,where ecological security deteriorated.From 2025 to 2040,the overall ecological security of the Daqing River Basin is expected to improve and remain at the“Relatively Safe”level.However,spatial heterogeneity will be further aggravated as the ecological security of major urban areas continues to deteriorate.Ecological security management zones and regulation strategies are proposed at the regional and county scales to emphasize integrated regulation for the entire basin and major urban areas.The proposed analytical framework provides valuable insights for advancing theoretical research on ecological security.The case study offers a practical reference for ecological security enhancement in river basins and other regions facing significant human-land conflicts.
基金supported by grants from the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(2024KQNCX157)Our work was also supported in part by the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College(2022B1212010006)+1 种基金in part by the Guangdong Higher Education Upgrading Plan(2021-2025)of“Rushing to the Top,Making Up Shortcomings and Strengthening Special Features”(R0400001-22)Additionally,we acknowledge support from the Zhuhai Basic and Applied Basic ResearchFoundation(2220004002717).
文摘CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif(PAM)sequences.Due to the limitations of experimental methods,bioinformatics approaches have become essential.However,existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems,resulting in low accuracy.To address this,we develop PAMPHLET,a pipeline that uses homology searches to identify additional spacers,significantly increasing the number of spacers up to 18-fold.PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers.These predictions are further validated using the DocMF platform,which characterizes protein-DNA recognition patterns via next-generation sequencing.The high consistency between PAMPHLET predictions and DocMF results for Cas proteins demonstrates the potential of PAMPHLET to enhance PAM sequence prediction accuracy,expedite the discovery process,and accelerate the development of CRISPR tools.
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
文摘In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.
文摘In breast cancer grading,the subtle differences between HE-stained pathological images and the insufficient number of data samples lead to grading inefficiency.With its rapid development,deep learning technology has been widely used for automatic breast cancer grading based on pathological images.In this paper,we propose an integrated breast cancer grading framework based on a fusion deep learning model,which uses three different convolutional neural networks as submodels to extract feature information at different levels from pathological images.Then,the output features of each submodel are learned by the fusion network based on stacking to generate the final decision results.To validate the effectiveness and reliability of our proposed model,we perform dichotomous and multiclassification experiments on the Invasive Ductal Carcinoma(IDC)pathological image dataset and a generated dataset and compare its performance with those of the state-of-the-art models.The classification accuracy of the proposed fusion network is 93.8%,the recall is 93.5%,and the F1 score is 93.8%,which outperforms the state-of-the-art methods.
基金This work was supported by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”of China under Grant 2018AAA0102303the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Natural Science Foundation of China(No.61631020,No.61871398,No.61931011 and No.U20B2038).
文摘This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained model for prediction often cannot maintain a good performance when facing small amount of historical data of the new target frequency.Moreover,the cognitive radio equipment usually implements the dynamic spectrum access in real time which means the time to recollect the data of the new task frequency band and retrain the model is very limited.To address the above issues,we develop a crossband data augmentation framework for spectrum prediction by leveraging the recent advances of generative adversarial network(GAN)and deep transfer learning.Firstly,through the similarity measurement,we pre-train a GAN model using the historical data of the frequency band that is the most similar to the target frequency band.Then,through the data augmentation by feeding the small amount of the target data into the pre-trained GAN,temporal-spectral residual network is further trained using deep transfer learning and the generated data with high similarity from GAN.Finally,experiment results demonstrate the effectiveness of the proposed framework.
基金supported by National Key R&D Program of China(No.2022YFB3104500)Natural Science Foundation of Jiangsu Province(No.BK20222013)Scientific Research Foundation of Nanjing Institute of Technology(No.3534113223036)。
文摘The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.60974126)the Natural Science Foundation of Jiangsu Province(No.BK2009094)
文摘The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast.
基金This research was funded by Scientific Research Deanship,Albaha University,under the Grant Number:[24/1440].
文摘As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents caused by insiders or malicious software(malware)in real-time.Failing to do so may cause a serious loss of reputation as well as business.At the same time,modern network traffic has dynamic patterns,high complexity,and large volumes that make it more difficult to detect malware early.The ability to learn tasks sequentially is crucial to the development of artificial intelligence.Existing neurogenetic computation models with deep-learning techniques are able to detect complex patterns;however,the models have limitations,including catastrophic forgetfulness,and require intensive computational resources.As defense systems using deep-learning models require more time to learn new traffic patterns,they cannot perform fully online(on-the-fly)learning.Hence,an intelligent attack/malware detection system with on-the-fly learning capability is required.For this paper,a memory-prediction framework was adopted,and a simplified single cell assembled sequential hierarchical memory(s.SCASHM)model instead of the hierarchical temporal memory(HTM)model is proposed to speed up learning convergence to achieve onthe-fly learning.The s.SCASHM consists of a Single Neuronal Cell(SNC)model and a simplified Sequential Hierarchical Superset(SHS)platform.The s.SCASHMis implemented as the prediction engine of a user behavior analysis tool to detect insider attacks/anomalies.The experimental results show that the proposed memory model can predict users’traffic behavior with accuracy level ranging from 72%to 83%while performing on-the-fly learning.
基金This work was supported by Shandong social science planning and research project in 2021(No.21CPYJ40).
文摘In view of the fact that the prediction effect of influential financial customer churn in the Internet of Things environment is difficult to achieve the expectation,at the smart contract level of the blockchain,a customer churn prediction framework based on situational awareness and integrating customer attributes,the impact of project hotspots on customer interests,and customer satisfaction with the project has been built.This framework introduces the background factors in the financial customer environment,and further discusses the relationship between customers,the background of customers and the characteristics of pre-lost customers.The improved Singular Value Decomposition(SVD)algorithm and the time decay function are used to optimize the search and analysis of the characteristics of pre-lost customers,and the key index combination is screened to obtain the data of potential lost customers.The framework will change with time according to the customer’s interest,adding the time factor to the customer churn prediction,and improving the dimensionality reduction and prediction generalization ability in feature selection.Logistic regression,naive Bayes and decision tree are used to establish a prediction model in the experiment,and it is compared with the financial customer churn prediction framework under situational awareness.The prediction results of the framework are evaluated from four aspects:accuracy,accuracy,recall rate and F-measure.The experimental results show that the context-aware customer churn prediction framework can be effectively applied to predict customer churn trends,so as to obtain potential customer data with high churn probability,and then these data can be transmitted to the company’s customer service department in time,so as to improve customer churn rate and customer loyalty through accurate service.
文摘Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffic prediction.NNs'dependency on parameter setting is the major challenge in using them as a predictor.Given the fact that the best combination of NN parameters results in the minimum error of predicted output,the main problem is NN optimization.So,it is viable to set the best combination of the parameters according to a specific traffic behavior.On the other hand,an automatic method—which is applicable in general cases—is strongly desired to set appropriate parameters for neural networks.This paper defines a self-adjusted NN using the non-dominated sorting genetic algorithm II(NSGA-II)as a multi-objective optimizer for short-term prediction.NSGA-II is used to optimize the number of neurons in the first and second layers of the NN,learning ratio and slope of the activation function.This model addresses the challenge of optimizing a multi-output NN in a self-adjusted way.Performance of the developed network is evaluated by application to both univariate and multivariate traffic flow data from an urban highway.Results are analyzed based on the performance measures,showing that the genetic algorithm tunes the NN as well without any manually pre-adjustment.The achieved prediction accuracy is calculated with multiple measures such as the root mean square error(RMSE),and the RMSE value is 10 and 12 in the best configuration of the proposed model for single and multi-step-ahead traffic flow prediction,respectively.
文摘In 2004, Jeff Hawkins presented a memory-prediction theory of brain function, and later used it to create the Hierar-chical Temporal Memory model. Several of the concepts described in the theory are applied here in a computer vision system for a mobile robot application. The aim was to produce a system enabling a mobile robot to explore its envi-ronment and recognize different types of objects without human supervision. The operator has means to assign names to the identified objects of interest. The system presented here works with time ordered sequences of images. It utilizes a tree structure of connected computational nodes similar to Hierarchical Temporal Memory and memorizes frequent sequences of events. The structure of the proposed system and the algorithms involved are explained. A brief survey of the existing algorithms applicable in the system is provided and future applications are outlined. Problems that can arise when the robot’s velocity changes are listed, and a solution is proposed. The proposed system was tested on a sequence of images recorded by two parallel cameras moving in a real world environment. Results for mono- and ste-reo vision experiments are presented.
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No.2023112the National Natural Science Foundation of China under Grant No.62206266Zhao Zhang is supported by the China Postdoctoral Science Foundation under Grant No.2021M703273.
文摘Predicting the future trajectories of multiple agents is essential for various applications in real life,such as surveillance systems,autonomous driving,and social robots.The trajectory prediction task is influenced by many factors,including the individual historical trajectory,interactions between agents,and the fuzzy nature of the observed agents’motion.While existing methods have made great progress on the topic of trajectory prediction,they treat all the information uniformly,which limits the effectiveness of information utilization.To this end,in this paper,we propose and utilize a model-agnostic framework to regard all the information in a two-level hierarchical view.Particularly,the first-level view is the inter-trajectory view.In this level,we observe that the difficulty in predicting different trajectory samples varies.We define trajectory difficulty and train the proposed framework in an“easy-to-hard”schema.The second-level view is the intra-trajectory level.We find the influencing factors for a particular trajectory can be divided into two parts.The first part is global features,which keep stable within a trajectory,i.e.,the expected destination.The second part is local features,which change over time,i.e.,the current position.We believe that the two types of information should be handled in different ways.The hierarchical view is beneficial to take full advantage of the information in a fine-grained way.Experimental results validate the effectiveness of the proposed model-agnostic framework.
基金funded by Fujian Science and Technology Key Project(No.2016H6022,2018J01099,2017H0037)
文摘The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.
基金supported by Xi’an University of Finance and Economics Scientific Research Support Program(No.21FCZD03)Shaanxi Education Department Research Program(No.22JK0077)National Statistical Science Research Project(Nos.2021LZ40,2022LZ38)。
文摘Interdisciplinary applications between information technology and geriatrics have been accelerated in recent years by the advancement of artificial intelligence,cloud computing,and 5G technology,among others.Meanwhile,applications developed by using the above technologies make it possible to predict the risk of age-related diseases early,which can give caregivers time to intervene and reduce the risk,potentially improving the health span of the elderly.However,the popularity of these applications is still limited for several reasons.For example,many older people are unable or unwilling to use mobile applications or devices(e.g.smartphones)because they are relatively complex operations or time-consuming for older people.In this work,we design and implement an end-to-end framework and integrate it with the WeChat platform to make it easily accessible to elders.In this work,multifactorial geriatric assessment data can be collected.Then,stacked machine learning models are trained to assess and predict the incidence of common diseases in the elderly.Experimental results show that our framework can not only provide more accurate prediction(precision:0.8713,recall:0.8212)for several common elderly diseases,but also very low timeconsuming(28.6 s)within a workflow compared to some existing similar applications.
文摘Heart disease is the leading cause of death worldwide.Predicting heart disease is challenging because it requires substantial experience and knowledge.Several research studies have found that the diagnostic accuracy of heart disease is low.The coronary heart disorder determines the state that influences the heart valves,causing heart disease.Two indications of coronary heart disorder are strep throat with a red persistent skin rash,and a sore throat covered by tonsils or strep throat.This work focuses on a hybrid machine learning algorithm that helps predict heart attacks and arterial stiffness.At first,we achieved the component perception measured by using a hybrid cuckoo search particle swarm optimization(CSPSO)algorithm.With this perception measure,characterization and accuracy were improved,while the execution time of the proposed model was decreased.The CSPSO-deep recurrent neural network algorithm resolved issues that state-of-the-art methods face.Our proposed method offers an illustrative framework that helps predict heart attacks with high accuracy.The proposed technique demonstrates the model accuracy,which reached 0.97 with the applied dataset.
文摘The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the industry’s needs. Using surveys, interviews, and on-site visits at eight major mining companies, we identified significant variations in maintenance strategies, CMMS usage, and reliability engineering. The EMMF prioritizes predictive maintenance, efficient CMMS implementation, ongoing training, and robust reliability engineering to shift from reactive to proactive maintenance. We recommend adopting continuous improvement practices and data-driven decision-making based on performance metrics, with a phased EMMF implementation aligning maintenance with strategic business objectives. This framework is poised to enhance operational efficiency, equipment reliability, and safety, fostering sustainable growth in the Zambian mining sector.