期刊文献+
共找到8,439篇文章
< 1 2 250 >
每页显示 20 50 100
A Two-Layer Optimal Scheduling Strategy for Rural Microgrids Accounting for Flexible Loads
1
作者 Guo Zhao Chi Zhang Qiyuan Ren 《Energy Engineering》 EI 2024年第11期3355-3379,共25页
In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the oper... In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits. 展开更多
关键词 Double carbon flexible loads ruralmicrogrid clean energy consumption two-layer scheduling improved adaptive genetic algorithm
在线阅读 下载PDF
Bilevel Optimal Scheduling of Island Integrated Energy System Considering Multifactor Pricing
2
作者 Xin Zhang Mingming Yao +3 位作者 Daiwen He Jihong Zhang Peihong Yang Xiaoming Zhang 《Energy Engineering》 EI 2025年第1期349-378,共30页
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys... In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified. 展开更多
关键词 Bilevel optimal scheduling load aggregator integrated energy operator carbon emission dynamic pricing mechanism
在线阅读 下载PDF
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
3
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm
4
作者 Qinhui Liu Laizheng Zhu +2 位作者 Zhijie Gao Jilong Wang Jiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期811-843,共33页
To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization p... To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching.Firstly,a mathematical model is established to minimize the maximum completion time.Secondly,an improved two-layer optimization algorithm is designed:the outer layer algorithm uses an improved PSO(Particle Swarm Optimization)to solve the workpiece batching problem,and the inner layer algorithm uses an improved GA(Genetic Algorithm)to solve the dual-resource scheduling problem.Then,a rescheduling method is designed to solve the task disturbance problem,represented by machine failures,occurring in the workshop production process.Finally,the superiority and effectiveness of the improved two-layer optimization algorithm are verified by two typical cases.The case results show that the improved two-layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer optimization algorithm.By setting the different numbers of AGVs(Automated Guided Vehicles)and analyzing the impact on the production cycle of the whole order,this paper uses two indicators,the maximum completion time decreasing rate and the average AGV load time,to obtain the optimal number of AGVs,which saves the cost of production while ensuring the production efficiency.This research combines the solved problem with the real production process,which improves the productivity and reduces the production cost of the flexible job shop,and provides new ideas for the subsequent research. 展开更多
关键词 Dual resource scheduling workpiece batching REscheduling particle swarm optimization genetic algorithm
在线阅读 下载PDF
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting 被引量:1
5
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
A Survey of Spark Scheduling Strategy Optimization Techniques and Development Trends
6
作者 Chuan Li Xuanlin Wen 《Computers, Materials & Continua》 2025年第6期3843-3875,共33页
Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demand... Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demands of resource utilization and performance optimization.Scheduling strategy optimization,as a key direction for improving Spark’s execution efficiency,has attracted widespread attention.This paper first introduces the basic theories of Spark,compares several default scheduling strategies,and discusses common scheduling performance evaluation indicators and factors affecting scheduling efficiency.Subsequently,existing scheduling optimization schemes are summarized based on three scheduling modes:load characteristics,cluster characteristics,and matching of both,and representative algorithms are analyzed in terms of performance indicators and applicable scenarios,comparing the advantages and disadvantages of different scheduling modes.The article also explores in detail the integration of Spark scheduling strategies with specific application scenarios and the challenges in production environments.Finally,the limitations of the existing schemes are analyzed,and prospects are envisioned. 展开更多
关键词 SPARK scheduling optimization load balancing resource utilization distributed computing
在线阅读 下载PDF
Day-Ahead Nonlinear Optimization Scheduling for Industrial Park Energy Systems with Hybrid Energy Storage
7
作者 Jiacheng Guo Yimo Luo +1 位作者 Bin Zou Jinqing Peng 《Engineering》 2025年第3期331-347,共17页
Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.... Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage. 展开更多
关键词 Industrial park energy system Hybrid energy storage Active energy storage Configuration optimization Day-ahead optimal scheduling
在线阅读 下载PDF
A Traffic Scheduling Strategy in SDN Data Center Based on Fibonacci Tree Optimization Algorithm
8
作者 Wang Yaomin Hu Ping +3 位作者 Zeng Jing Li Donghong Yuan Lu Long Hua 《China Communications》 2025年第11期176-191,共16页
To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in t... To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively. 展开更多
关键词 Fibonacci tree optimization algorithm(FTO) multi-modal optimization SDN data center traffic scheduling
在线阅读 下载PDF
Optimization of microgrid scheduling based on multi-strategy improved MOPSO algorithm
9
作者 Yang Xue Shiwei Liang +1 位作者 Fengwei Qian Jinyi Tang 《Global Energy Interconnection》 2025年第6期959-968,共10页
A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protect... A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protection.A grid-connected microgrid model containing photovoltaic cells,wind power,micro gas turbine,diesel generator,and storage battery is constructed with the aim of optimizing the multi-objective grid-connected microgrid economic optimization problem with minimum power generation cost and environmental management cost.Based on the optimization of the standard multi-objective particle swarm optimization algorithm,four strategies are introduced to improve the algorithm,namely,Logistic chaotic mapping,adaptive inertia weight adjustment,adaptive meshing using congestion distance mechanism,and fuzzy comprehensive evaluation.The proposed IMOPSO is applied to the microgrid optimization problem and the performance is compared with other unimproved multi-objective gray wolf algorithm(MOGWO),multi-objective ant colony algorithm(MOACO),and MOPSO algorithms,and the total cost of the proposed method is reduced by 3.15%,8.34%,and 10.27%,respectively.The simulation results show that IMOPSO can more effectively reduce the cost and optimize power distribution,and verify the effectiveness of the proposed method. 展开更多
关键词 MICROGRID Multi-objective particle swarm System economic operation optimal scheduling
在线阅读 下载PDF
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
10
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 Multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm
11
作者 Jeng-Shyang Pan Na Yu +3 位作者 Shu-Chuan Chu An-Ning Zhang Bin Yan Junzo Watada 《Computers, Materials & Continua》 2025年第2期2495-2520,共26页
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource... The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment. 展开更多
关键词 Willow catkin optimization algorithm cloud computing task scheduling opposition-based learning strategy
在线阅读 下载PDF
Multi-strategy Enhanced Hiking Optimization Algorithm for Task Scheduling in the Cloud Environment
12
作者 Libang Wu Shaobo Li +2 位作者 Fengbin Wu Rongxiang Xie Panliang Yuan 《Journal of Bionic Engineering》 2025年第3期1506-1534,共29页
Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been prop... Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission. 展开更多
关键词 Task scheduling Chebyshev chaos Hybrid speed update strategy Metaheuristic algorithms The Hiking optimization Algorithm(HOA)
在线阅读 下载PDF
An Optimal Dynamic Generation Scheduling for a Wind-Thermal Power System 被引量:4
13
作者 Xingyu Li Dongmei Zhao 《Energy and Power Engineering》 2013年第4期1016-1021,共6页
In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power ... In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm. 展开更多
关键词 Generation scheduling DYNAMIC optimIZATION WIND Power PARTICLE SWARM optimIZATION
暂未订购
A Chance Constrained Optimal Reserve Scheduling Approach for Economic Dispatch Considering Wind Penetration 被引量:2
14
作者 Yufei Tang Chao Luo +1 位作者 Jun Yang Haibo He 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期186-194,共9页
The volatile wind power generation brings a full spectrum of problems to power system operation and management, ranging from transient system frequency fluctuation to steady state supply and demand balancing issue. In... The volatile wind power generation brings a full spectrum of problems to power system operation and management, ranging from transient system frequency fluctuation to steady state supply and demand balancing issue. In this paper, a novel wind integrated power system day-ahead economic dispatch model, with the consideration of generation and reserve cost is modelled and investigated. The proposed problem is first formulated as a chance constrained stochastic nonlinear programming U+0028 CCSNLP U+0029, and then transformed into a deterministic nonlinear programming U+0028 NLP U+0029. To tackle this NLP problem, a three-stage framework consists of particle swarm optimization U+0028 PSO U+0029, sequential quadratic programming U+0028 SQP U+0029 and Monte Carlo simulation U+0028 MCS U+0029 is proposed. The PSO is employed to heuristically search the line power flow limits, which are used by the SQP as constraints to solve the NLP problem. Then the solution from SQP is verified on benchmark system by using MCS. Finally, the verified results are feedback to the PSO as fitness value to update the particles. Simulation study on IEEE 30-bus system with wind power penetration is carried out, and the results demonstrate that the proposed dispatch model could be effectively solved by the proposed three-stage approach. © 2017 Chinese Association of Automation. 展开更多
关键词 Constrained optimization Economics Electric load flow Electric power generation Intelligent systems Monte Carlo methods Nonlinear programming optimization Particle swarm optimization (PSO) Problem solving Quadratic programming scheduling Stochastic systems Wind power
在线阅读 下载PDF
An optimal scheduling algorithm based on task duplication 被引量:2
15
作者 RuanYoulin LiuCan ZhuGuangxi LuXiaofeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期445-450,共6页
When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and ... When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks. 展开更多
关键词 optimal scheduling algorithm task duplication optimality condition.
在线阅读 下载PDF
Post-Processing Time-Aware Optimal Scheduling of Single Robotic Cluster Tools 被引量:3
16
作者 Qing Hua Zhu Yan Qiao +1 位作者 NaiQi Wu Yan Hou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期597-605,共9页
Integrated circuit chips are produced on silicon wafers.Robotic cluster tools are widely used since they provide a reconfigurable and efficient environment for most wafer fabrication processes.Recent advances in new s... Integrated circuit chips are produced on silicon wafers.Robotic cluster tools are widely used since they provide a reconfigurable and efficient environment for most wafer fabrication processes.Recent advances in new semiconductor materials bring about new functionality for integrated circuits.After a wafer is processed in a processing chamber,the wafer should be removed from there as fast as possible to guarantee its high-quality integrated circuits.Meanwhile,maximization of the throughput of robotic cluster tools is desired.This work aims to perform post-processing time-aware scheduling for such tools subject to wafer residencytime constraints.To do so,closed-form expression algorithms are derived to compute robot waiting time accurately upon the analysis of particular events of robot waiting for singlearm cluster tools.Examples are given to show the application and effectiveness of the proposed algorithms. 展开更多
关键词 Cluster tool discrete event systems optimization robotic systems scheduling
在线阅读 下载PDF
Dynamic forecasting and optimal scheduling of by-product gases in integrated iron and steel works 被引量:4
17
作者 Qi Zhang Hui Li +4 位作者 Jia-lin Ma Hua-yan Xu Bo-yang Yu Gang Wang Shan Jiang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第5期529-546,共18页
The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product... The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product gases are imbalanced, gas flaring may occur, leading to energy wastage and environmental pollution. Therefore, optimal scheduling of by-product gases is important in iron and steel works. A BP_LSSVM model, which combines back-propagation (BP) neural network and least squares support vector machine (LSSVM), and an improved mixed integer linear programming model were proposed to forecast the surplus gases and allocate them optimally. To maximize energy utilization, the stability of gas holders and boilers was considered and a concise heuristic procedure was proposed to assign penalties for boilers and gas holders. Moreover, the optimal level of gas holder was studied to enhance the stability of the gas system. Compared to the manual operation, the optimal results showed that the electricity generated by the power plant increased by 2.93% in normal condition and by 22.2% in overhaul condition. The proposed model minimizes the total cost by optimizing the boiler load with less adjustment frequency and the stability of gas holders and can be used as a guidance in dynamic forecasting and optimal scheduling of by-product gases in integrated iron and steel works. 展开更多
关键词 Iron and steel WORKS BACK-PROPAGATION neural network Least SQUARES support vector machine Mixed INTEGER linear PROGRAMMING Dynamic forecasting optimal scheduling
原文传递
Three-Level Optimal Scheduling and Power Allocation Strategy for Power System Containing Wind-Storage Combined Unit 被引量:1
18
作者 Jingjing Bai Yunpeng Cheng +2 位作者 Shenyun Yao Fan Wu Cheng Chen 《Energy Engineering》 EI 2024年第11期3381-3400,共20页
To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ... To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis. 展开更多
关键词 Wind power cluster energy storage system wind-storage combined unit optimal scheduling power allocation
在线阅读 下载PDF
Microgrid Optimal Scheduling 被引量:1
19
作者 Salem Al-Agtash Mohamad Al Hashem 《Smart Grid and Renewable Energy》 CAS 2023年第2期15-29,共15页
This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian Uni... This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity. 展开更多
关键词 MICROGRID Renewable Energy optimal scheduling Power Flow
在线阅读 下载PDF
Optimal Scheduling Strategy of Source-Load-Storage Based onWind Power Absorption Benefit
20
作者 Jie Ma Pengcheng Yue +6 位作者 Haozheng Yu Yuqing Zhang Youwen Zhang Cuiping Li Junhui Li Wenwen Qin Yong Guo 《Energy Engineering》 EI 2024年第7期1823-1846,共24页
In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of ... In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit. 展开更多
关键词 Wind power consumption two-layer optimal demand response rolling scheduling wind curtailment penalty
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部