期刊文献+
共找到300篇文章
< 1 2 15 >
每页显示 20 50 100
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
1
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
2
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
在线阅读 下载PDF
Distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm 被引量:4
3
作者 Yaozhong Zhang Lei Zhang Zhiqiang Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1236-1243,共8页
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple... A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload. 展开更多
关键词 distributed collaborative planning BLACKBOARD decision maker (DM) nested genetic algorithm (NGA).
在线阅读 下载PDF
A Two-Layer Optimal Scheduling Strategy for Rural Microgrids Accounting for Flexible Loads
4
作者 Guo Zhao Chi Zhang Qiyuan Ren 《Energy Engineering》 EI 2024年第11期3355-3379,共25页
In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the oper... In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits. 展开更多
关键词 Double carbon flexible loads ruralmicrogrid clean energy consumption two-layer scheduling improved adaptive genetic algorithm
在线阅读 下载PDF
Nested Genetic Algorithm for Resolving Overlapped Spectral Bands
5
作者 Xiu Qi ZHANG Yun Hui ZENG +1 位作者 Jian Bin ZHENG Hong GAO(Institute of Electroanalytical Chemistry, Northwest University, Xi’an 710069) 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第7期603-604,共2页
A nested genetic algorithm, including genetic parameter level and genetic implemented level for peak parameters, was proposed and applied for resolving overlapped spectral bands. By the genetic parameter level, parame... A nested genetic algorithm, including genetic parameter level and genetic implemented level for peak parameters, was proposed and applied for resolving overlapped spectral bands. By the genetic parameter level, parameters of generic algorithm were optimized; moreover, the number of overlapped peaks was determined simultaneously Then parameters of individual peaks were computed with the genetic implemented level. 展开更多
关键词 nested genetic algorithm resolving overlapped bands SPECTRA
在线阅读 下载PDF
Optimization of Nesting Systems in Shipbuilding:A Review
6
作者 Sari Wanda Rulita Gunawan Muzhoffar Dimas Angga Fakhri 《哈尔滨工程大学学报(英文版)》 2025年第1期152-175,共24页
This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production ... This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production efficiency.The shipbuilding process involves the complex cutting and arrangement of steel plates,making the optimization of these operations vital for cost-effectiveness and sustainability.Nesting algorithms are broadly classified into four categories:exact,heuristic,metaheuristic,and hybrid.Exact algorithms ensure optimal solutions but are computationally demanding.In contrast,heuristic algorithms deliver quicker results using practical rules,although they may not consistently achieve optimal outcomes.Metaheuristic algorithms combine multiple heuristics to effectively explore solution spaces,striking a balance between solution quality and computational efficiency.Hybrid algorithms integrate the strengths of different approaches to further enhance performance.This review systematically assesses these algorithms using criteria such as material dimensions,part geometry,component layout,and computational efficiency.The findings highlight the significant potential of advanced nesting techniques to improve material utilization,reduce production costs,and promote sustainable practices in shipbuilding.By adopting suitable nesting solutions,shipbuilders can achieve greater efficiency,optimized resource management,and superior overall performance.Future research directions should focus on integrating machine learning and real-time adaptability to further enhance nesting algorithms,paving the way for smarter,more sustainable manufacturing practices in the shipbuilding industry. 展开更多
关键词 Cutting plate nesting algorithms nesting optimization Shipbuilding efficiency algorithmic optimization
在线阅读 下载PDF
Use the Power of a Genetic Algorithm to Maximize and Minimize Cases to Solve Capacity Supplying Optimization and Travelling Salesman in Nested Problems
7
作者 Ali Abdulhafidh Ibrahim Hajar Araz Qader Nour Ai-Huda Akram Latif 《Journal of Computer and Communications》 2023年第3期24-31,共8页
Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The ai... Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The aims are to implement the genetic algorithm to solve these two different (nested) problems, and to get the best or optimization solutions. 展开更多
关键词 Genetic algorithm Capacity Supplying Optimization Traveling Salesman Problem nested Problems
在线阅读 下载PDF
Algorithm for 2D irregular-shaped nesting problem based on the NFP algorithm and lowest-gravity-center principle 被引量:5
8
作者 LIU Hu-yao HE Yuan-jun 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期570-576,共7页
The nesting problem involves arranging pieces on a plate to maximize use of material. A new scheme for 2D ir- regular-shaped nesting problem is proposed. The new scheme is based on the NFP (No Fit Polygon) algorithm a... The nesting problem involves arranging pieces on a plate to maximize use of material. A new scheme for 2D ir- regular-shaped nesting problem is proposed. The new scheme is based on the NFP (No Fit Polygon) algorithm and a new placement principle for pieces. The novel placement principle is to place a piece to the position with lowest gravity center based on NFP. In addition, genetic algorithm (GA) is adopted to find an efficient nesting sequence. The proposed scheme can deal with pieces with arbitrary rotation and containing region with holes, and achieves competitive results in experiment on benchmark datasets. 展开更多
关键词 nestING Cutting stock No Fit Polygon (NFP) Genetic algorithm (GA) Lowest gravity center
在线阅读 下载PDF
Heuristic algorithm based on the principle of minimum total potential energy(HAPE):a new algorithm for nesting problems 被引量:2
9
作者 Xiao LIU Jia-wei YE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第11期860-872,共13页
We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the pack... We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the packing attitude of the piece.We propose a new algorithm named HAPE(Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the optimal packing attitude at which the piece has the lowest center of gravity.In addition,a new technique for polygon overlap testing is proposed which avoids the time-consuming calculation of no-fit-polygon(NFP).The detailed implementation of HAPE is presented and two computational experiments are described.The first experiment is based on a real industrial problem and the second on 11 published benchmark problems.Using a hill-climbing(HC) search method,the proposed algorithm performs well in comparison with other published solutions. 展开更多
关键词 Packing Cutting nestING Irregular Heuristic algorithm Minimum total potential energy
原文传递
Computationally Efficient Direction of Arrival Estimation for Improved Nested Linear Array 被引量:1
10
作者 LIN Xinping ZHOU Mengjie +1 位作者 ZHANG Xiaofei LI Jianfeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期1018-1025,共8页
Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more d... Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more degrees of freedom(DOFs)and better angle estimation performance.Furthermore,a computationally efficient DOA estimation algorithm is proposed.The discrete Fourier transform(DFT)method is utilized to obtain coarse DOA estimates,and subsequently,fine DOA estimates are achieved by spatial smoothing multiple signals classification(SS-MUSIC)algorithm.Compared to SS-MUSIC algorithm,the proposed algorithm has the same estimation accuracy with lower computational complexity because the coarse DOA estimates enable to shrink the range of angle spectral search.In addition,the estimation of the number of signals is not required in advance by DFT method.Extensive simulation results testify the effectiveness of the proposed algorithm. 展开更多
关键词 DOA estimation nested linear array DOFs SS-MUSIC algorithm computational complexity
在线阅读 下载PDF
Recognizing Expression Variant and Occluded Face Images Based on Nested HMM and Fuzzy Rule Based Approach 被引量:1
11
作者 Parvathi Ramalingam Shanthi Dhanushkodi 《Circuits and Systems》 2016年第6期983-994,共12页
The face recognition with expression and occlusion variation becomes the greatest challenge in biometric applications to recognize people. The proposed work concentrates on recognizing occlusion and seven kinds of exp... The face recognition with expression and occlusion variation becomes the greatest challenge in biometric applications to recognize people. The proposed work concentrates on recognizing occlusion and seven kinds of expression variations such as neutral, surprise, happy, sad, fear, disgust and angry. During enrollment process, principle component analysis (PCA) detects facial regions on the input image. The detected facial region is converted into fuzzy domain data to make decision during recognition process. The Haar wavelet transform extracts features from the detected facial regions. The Nested Hidden markov model is employed to train these features and each feature of face image is considered as states in a Markov chain to perform learning among the features. The maximum likelihood for the input image was estimated by using Baum Welch algorithm and these features were kept on database. During recognition process, the expression and occlusion varied face image is taken as the test image and maximum likelihood for test image is found by following same procedure done in enrollment process. The matching score between maximum likelihood of input image and test image is computed and it is utilized by fuzzy rule based method to decide whether the test image belongs to authorized or unauthorized. The proposed work was tested among several expression varied and occluded face images of JAFFE and AR datasets respectively. 展开更多
关键词 Face Recognition Fuzzy Rule Based Method Expression and Occlusion Variation Baum Welch algorithm nested Hidden Markov Model
在线阅读 下载PDF
Two-Dimensional Nesting System Based on Hybrid Genetic Algorithm
12
作者 WU Qingming YANG Wei ZHANG Qiang ZHOU Junjie 《Wuhan University Journal of Natural Sciences》 CAS 2009年第1期60-64,共5页
According to the cutting stock problem of 2-dimensional shapes, a nesting system (NS) based on hybrid genetic algorithm (HGA) is established. The system optimizes the sequence and angles of polygons with hybrid Ge... According to the cutting stock problem of 2-dimensional shapes, a nesting system (NS) based on hybrid genetic algorithm (HGA) is established. The system optimizes the sequence and angles of polygons with hybrid Genetic Algorithm to accomplish the superior solution. It nests the irregular shape directly without covering irregular shapes with a rectangle. It also improves the decoding strategy of 2-dimensional shapes nesting based on the classical bottom-left strategy, makes the new strategy be universal to convex polygons, concave polygons and line-circular composted polygons. 展开更多
关键词 nesting system hybrid genetic algorithm (HGA) regular and circular polygon bottom-left strategy
原文传递
Genetic Algorithms to the Nesting Problem in the Leather Manufacturing Industry
13
作者 张玉萍 蒋寿伟 尹忠慰 《Journal of Donghua University(English Edition)》 EI CAS 2005年第1期90-96,共7页
The nesting problem in the leather manufacturing is the problem of placing a set of irregularly shaped pieces (called stencils) on a set of irregularly shaped surfaces (called leathers sheets). This paper presents a n... The nesting problem in the leather manufacturing is the problem of placing a set of irregularly shaped pieces (called stencils) on a set of irregularly shaped surfaces (called leathers sheets). This paper presents a novel and promising processing approach. After the profile of leather sheets and stencils is obtained with digitizer, the discretization makes the processing independent of the specific geometrical information. The constraints of profile are regarded thoroughly. A heuristic bottom-left placement strategy is employed to sequentially locate stencils on sheets. The optimal placement sequence and rotation are deterimined by genetic algorithms (GA). A natural concise encoding method is developed to satisfy all the possible requirements of the leather nesting problem. The experimental results show that the proposed algorithm can not only be applied to the normal two-dimensional nesting problem, but also especially suitable for the placement of multiple two-dimensional irregular stencils on multiple two-dimensional irregular sheets. 展开更多
关键词 leather nesting genetic algorithms two-dimensional geometry IRREGULAR discretization.
在线阅读 下载PDF
考虑不确定因素的碳纤维复合材料车门内板区间可靠性优化
14
作者 张东东 张乐迪 +2 位作者 刘正虎 赵礼辉 高大威 《机械设计》 北大核心 2025年第7期36-44,共9页
对于汽车轻量化结构设计,各种不确定因素对设计的可靠性产生重要影响。以碳纤维增强复合材料(CFRP)的车门内板作为研究对象,讨论了基于安全因子的确定性优化设计结果的波动性;引入可靠性的区间可能度(RPDI),用以描述不确定因素对车门性... 对于汽车轻量化结构设计,各种不确定因素对设计的可靠性产生重要影响。以碳纤维增强复合材料(CFRP)的车门内板作为研究对象,讨论了基于安全因子的确定性优化设计结果的波动性;引入可靠性的区间可能度(RPDI),用以描述不确定因素对车门性能的影响程度;采用区间数表征材料性能分散、单层CFRP板厚度公差和载荷波动等不确定性,以车门内板的质量最小作为优化目标、单层板厚度作为设计变量、静态工况下车门内板的变形响应及单层板最大失效因子作为约束条件,建立CRFP车门内板的区间可靠性优化模型;最后结合Kriging近似模型和嵌套遗传算法对区间优化模型进行求解,并将优化结果与确定性优化结果进行了比较。结果表明:构建的CRFP车门内板区间可靠性优化方法能够考虑CFRP铺层厚度公差、材料性能及载荷波动等不确定因素对优化设计的影响,保证设计结果可靠性的同时能够充分利用材料,实现轻量化设计。 展开更多
关键词 碳纤维增强复合材料 车门内板 区间可能度 可靠性优化 嵌套遗传算法
原文传递
客户关系下的多仓库半开放式危险品运输路径优化
15
作者 王占中 吴智豪 刘文佳 《同济大学学报(自然科学版)》 北大核心 2025年第5期741-748,共8页
在考虑客户关系的条件下,建立以运输总成本、运输风险和总延误时间最小化为目标的多仓库半开放式危险品运输路径优化模型,设计蚁群算法和模拟退火算法混合的蚁群‒模拟退火(ACO-SA)嵌套算法求解该模型。该嵌套算法运用邻接矛盾矩阵表示... 在考虑客户关系的条件下,建立以运输总成本、运输风险和总延误时间最小化为目标的多仓库半开放式危险品运输路径优化模型,设计蚁群算法和模拟退火算法混合的蚁群‒模拟退火(ACO-SA)嵌套算法求解该模型。该嵌套算法运用邻接矛盾矩阵表示客户关系,外层模拟退火算法负责修改危险品运输车辆与客户点的匹配关系,内层蚁群算法负责规划每辆车中具体的路径遍历顺序。将该嵌套算法应用于大小规模算例中,得到多个Pareto最优解,并与4种单一算法的求解结果进行比较,验证嵌套算法的有效性和可靠性。对比有无客户关系下两个算例的求解结果,证明客户间存在的合作或竞争关系将直接影响企业运输方案制定。 展开更多
关键词 危险品运输 半开放式 客户关系 邻接矛盾矩阵 蚁群‒模拟退火嵌套算法
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
16
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于自适应嵌套抽样和贝叶斯理论的桥梁有限元模型修正 被引量:1
17
作者 徐希堃 洪彧 +3 位作者 许靖业 周志达 蒲黔辉 文旭光 《西南交通大学学报》 北大核心 2025年第2期503-512,共10页
在基于有限元模型的桥梁健康监测中,贝叶斯模型修正技术通常被用于量化有限元模型中重要参数的不确定性,以解决模型修正中由于测量误差、建模误差、计算误差等造成的非唯一解问题.为解决由于大量调用有限元模拟运算,导致修正效率低下的... 在基于有限元模型的桥梁健康监测中,贝叶斯模型修正技术通常被用于量化有限元模型中重要参数的不确定性,以解决模型修正中由于测量误差、建模误差、计算误差等造成的非唯一解问题.为解决由于大量调用有限元模拟运算,导致修正效率低下的问题,基于自适应嵌套抽样(ANS)算法,提出一种贝叶斯模型修正方法.该方法利用模态参数构建概率目标函数,并采用ANS算法对其进行逼近,ANS保留了嵌套抽样(NS)的性质,通过逐层缩小抽样范围,使得样本最终逼近最优参数;通过逐层近似,将高维积分问题转化为简单的一维积分问题,简化了证据值和后验概率密度值的计算过程;在此基础上,ANS算法在迭代过程中通过自适应地调整样本数量,减少对有限元模型的调用;最后,对一座人行桁架桥进行了贝叶斯有限元模型修正试验.结果表明:在相同算法参数设置下,ANS算法相比传统NS算法降低了约84%的有限元模拟调用次数,节省了约86%计算时间,并能获得同等精度的不确定性修正结果. 展开更多
关键词 有限元模型 贝叶斯模型修正 不确定性量化 嵌套抽样算法 自适应算法
在线阅读 下载PDF
考虑交通流的柔性互联配电网电动汽车承载能力计算方法 被引量:1
18
作者 曹佳晨 张沈习 +3 位作者 张璐 刘文亮 曹毅 梁宇 《电力系统自动化》 北大核心 2025年第5期24-37,共14页
交通流的时空变化会导致电动汽车充电需求分布发生改变,进而影响配电网电动汽车承载能力。为了精细化考虑交通流的影响,提出了计及交通流的柔性互联配电网(FIDN)电动汽车承载能力计算方法。该方法考虑智能软开关的灵活可调能力,以降低... 交通流的时空变化会导致电动汽车充电需求分布发生改变,进而影响配电网电动汽车承载能力。为了精细化考虑交通流的影响,提出了计及交通流的柔性互联配电网(FIDN)电动汽车承载能力计算方法。该方法考虑智能软开关的灵活可调能力,以降低电动汽车规模化接入对配电网的冲击。首先,基于半动态交通流模型,综合考虑多种电动汽车接入模式,建立电动汽车调控模型;其次,计及交通流影响下的电动汽车调控措施,以能够承载的电动汽车数量最大为目标,提出考虑交通流的FIDN电动汽车承载能力计算模型;然后,通过二次凸包络松弛方法、大M法、二阶锥松弛方法等实现模型转化,并提出嵌套收紧松弛算法对模型进行求解,以减小松弛间隙;最后,在改进的标准算例及福建省某实际算例中进行测试分析,验证了所提模型和算法的有效性。 展开更多
关键词 柔性互联 配电网 电动汽车 承载能力 交通流 嵌套收紧松弛算法 智能软开关
在线阅读 下载PDF
响应生态-经济-社会需求的区域水土资源联合优化配置研究 被引量:1
19
作者 靳世鑫 苏承国 +3 位作者 黄佳荣 王慧亮 严登华 王占桥 《水利水电技术(中英文)》 北大核心 2025年第1期61-73,共13页
【目的】水土资源联合优化配置是缓解水土资源时空分布格局与区域生态、社会、经济发展不匹配问题,促进社会稳定和可持续发展的有效途径。【方法】基于二元水循环理论,将土壤水和再生水纳入水资源供给侧考虑,统筹考虑生态环境-经济社会... 【目的】水土资源联合优化配置是缓解水土资源时空分布格局与区域生态、社会、经济发展不匹配问题,促进社会稳定和可持续发展的有效途径。【方法】基于二元水循环理论,将土壤水和再生水纳入水资源供给侧考虑,统筹考虑生态环境-经济社会系统中水-土-碳等各要素之间相互作用关系,构建了响应生态-经济-社会需求的区域水土资源多目标优化配置框架,提出耦合非线性多目标规划和逐次逼近法的双层嵌套算法以实现框架的迭代求解,得到区域水土资源联合配置方案。【结果】洛阳市的水土资源联合优化配置结果表明,各县区土地利用格局及水资源供给量实现了协同优化,区域水资源总量增加了0.2923亿m^(3),净碳排放量减少了0.3814%(折合90698 t标准煤),GDP维持稳定,各行政单元间供需水比值的差异程度达到最小。【结论】研究成果为提高区域水土资源综合利用效率,保障区域生态-经济-社会可持续发展提供了有力的科学支撑。 展开更多
关键词 水土资源联合配置 生态-经济-社会需求 二元水循环 相互作用关系 双层嵌套算法 影响因素 水资源
在线阅读 下载PDF
水光联合运行对梯级水电站生态调度影响研究
20
作者 许誉骞 李鹏 +3 位作者 徐涛 曹海 彭期冬 林俊强 《水力发电学报》 北大核心 2025年第5期72-83,共12页
水电站生态调度是实现水能资源利用与生态环境保护和谐共生的重要手段。随着新能源基地的建设,大规模光伏和水电的联合运行将显著改变水电站的调度方式,在生态调度期间,可能对水电站生态调度产生一定的影响。为探索水光联合运行对梯级... 水电站生态调度是实现水能资源利用与生态环境保护和谐共生的重要手段。随着新能源基地的建设,大规模光伏和水电的联合运行将显著改变水电站的调度方式,在生态调度期间,可能对水电站生态调度产生一定的影响。为探索水光联合运行对梯级水电站生态调度的影响,本文建立了一种多目标双层嵌套式梯级水电站生态调度模型,上层模型可以模拟连续多日涨水的水电站生态调度过程,下层模型可以模拟考虑光伏接入的水电站日内调度过程。以金沙江下游溪洛渡-向家坝梯级水电站为案例,模拟结果表明:各典型水文年下,水光联合调度对产漂流性卵鱼类所需的多日连续涨水过程不会造成显著影响,且能实现2次以上有效涨水过程,单次涨水天数可达6天;相较于纯水力发电,水光联合运行能降低8.9%~28.3%的水电站下游径流波动。研究成果可为制定梯级水电站生态调度与新能源接入优化方案提供参考依据。 展开更多
关键词 梯级水电站 水光联合系统 生态调度 多目标进化算法 耦合嵌套模型
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部