In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Consi...In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Considering calculation simplicity and operation practicability,the Moving Pulsating Ball Model(MPBM)of large amplitude liquid sloshing is introduced into the calculation of launch vehicle stage separation.Combining the dynamic equation of the model with the energy relationship during"breathing movement",the formula calculating the force of liquid on the rigid body is derived.Compared with the calculations of commercial CFD calculation software,the accuracy of MPBM model is verified.Then,all the external forces and moments are applied to the rigid body of the stages,so that the translational and rotational dynamic equations of the stages are obtained respectively.According to the relative position of the two stages,the geometric shape of the interstage section and the engine of the second stage,the minimum clearance in the separation process can be decided to guarantee that the separation process is safe.展开更多
The production of hydrogen on offshore platform can decrease reliance on the power grid,mitigate transmission losses of electricity,and diminish investment costs for subsea cables.In this study,the hydrodynamic perfor...The production of hydrogen on offshore platform can decrease reliance on the power grid,mitigate transmission losses of electricity,and diminish investment costs for subsea cables.In this study,the hydrodynamic performances of platforms equipped with two types of tanks separately are evaluated and are comprehensively compared with each other.The Volume of Fluid(VOF)two-phase flow model and the Shear−Stress Transport(SST)k−omega turbulence model are applied to simulate the motion responses of the C-type and Moss-type tanks under the same excitation force of platform based on the time-frequency response results of platforms.Comparisons are made among the shape of the liquid hydrogen surface,variations of the wall pressures,changes of the gas-liquid temperatures,and the pressure drop phenomena induced by phase changes inside the tanks.The results indicate that the interaction between wave-induced excitation force and sloshing force from tanks can either increase or decrease the amplitude of platform’s motion.Meanwhile,the thermodynamic responses of liquid hydrogen sloshing inside the tanks correlate positively with the dynamic behavior.Compared with Moss-type tanks,the sloshing of liquid hydrogen in C-type tanks is more intense,accompanied by jetting and breaking wave phenomena.For the C-type tanks,the substantial increase in interfacial area significantly enhances phase change condensation and heat transfer,leading to the rapid decline in temperature and pressure inside the tanks.The results of this study can provide valuable insights for the future design of floating hydrogen storage platform and the selection of tanks on the platform.展开更多
The analogy between the wave equation of liquid and the Navier equations of structural elasticity is examined in detail. By introducing appropriate parameters, the structural counterpart of the liquid sloshing model c...The analogy between the wave equation of liquid and the Navier equations of structural elasticity is examined in detail. By introducing appropriate parameters, the structural counterpart of the liquid sloshing model can be easily built. Therefore, the dynamic analysis of liquid sloshing can be reduced to that of structural elasticity, and the existing FEM structural analysis computer programs can be applied to liquid sloshing analysis without any modification. The present method also reveals the internal relationship between liquid sloshing and structural vibration. The effectiveness and reliability of the method is illustrated by the numerical example.展开更多
The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and...The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and the forces and rolling moment during turning were calculated. The reliability of the calculation method was validated by comparisons with experimental results. The results showed that during braking,liquid splashes in the tank and the maximum forces and G (the ratio of weight acting on the front axle to the rear axle) are large when A (the ratio of the arch area above the baffle to the area of cross section)≤0.1. When A≥0.2,as the position of the baffle is lowered,the maximum of Fx (the force in direction x) first decreases then increases,and the maximum of Fy (the force in direction y) and G increase. During turning,liquid splashes in the tank and the maximum forces and M (the rolling moment) are large when D (the ratio of the arch area above the baffle to the area of cross section)≤0.2. When D≥0.3,as the position of the baffle is lowered,the maximums of Fy,Fz (the force in direction z) and M increase.展开更多
A meshless numerical simulation method, the moving-particle semi-implicit method (MPS) is presented in this paper to study the sloshing phenomenon in ocean and naval engineering. As a meshless method, MPS uses parti...A meshless numerical simulation method, the moving-particle semi-implicit method (MPS) is presented in this paper to study the sloshing phenomenon in ocean and naval engineering. As a meshless method, MPS uses particles to replace the mesh in traditional methods, the governing equations are discretized by virtue of the relationship of particles, and the Poisson equation of pressure is solved by incomplete Cholesky conjugate gradient method (ICCG), the free surface is tracked by the change of numerical density. A numerical experiment of viscous liquid sloshing tank was presented and compared with the result got by the difference method with the VOF, and an additional modification step was added to make the simulation more stable. The results show that the MPS method is suitable for the simulation of viscous liquid sloshing, with the advantage in arranging the particles easily, especially on some complex curved surface.展开更多
In this research, liquid sloshing behavior in a 2-D rectangular tank was simulated using ANSYS-FLUENT software subject to single or multiple-coupled external excitations (such as sway coupled with roll, and sway and ...In this research, liquid sloshing behavior in a 2-D rectangular tank was simulated using ANSYS-FLUENT software subject to single or multiple-coupled external excitations (such as sway coupled with roll, and sway and roll coupled with heave). The volume of fluid (VOF) method was used to track the free surface of sloshing. External excitation was imposed through the motion of the tank by using the dynamic mesh technique. The study shows that if the tank is subjected to multiple coupled excitations and resonant excitation frequencies, liquid sloshing will become violent and sloshing loads, including impact on the top wall, will be intensified.展开更多
The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for th...The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for the liquid and elastic damping spacer results in significant analytical difficulties. Two different velocity potential functions are respectively used in the liquid domain above, or below the damping spacer. A coupled frequency equation is obtained by using the pair of velocity potential functions. The numerical and theoretical analysis show that the natural frequency changes according to the location and stiffness of the spacer. Results indicate that the frequency coupling between damping spacer and sloshing liquid is obvious near the free liquid surface. It is shown that the coupling frequency increases with the increase of damping baffle rigidity.展开更多
With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity a...With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity and randomness,not only affects the stability of the ship but also generates a huge impact force on the wall of the tank.To further investigate liquid tank sloshing,a comprehensive review is given on the research process of the most focused subjects of liquid sloshing.Summarizing the existing research will help to identify issues in the current field and provide useful references.The methods for investigating sloshing,the research progress and the situations worldwide are discussed.The advantages and defects of experiments and numerical simulations are also explored.The problems which need to be explored in the future are subsequently proposed.展开更多
Nonlinear coupling dynamics between a spring-mass system and a finite amplitude sloshing system with liquid in a cylindrical tank is investigated. Based on a group of nonlinear coupling equations of six degrees of fre...Nonlinear coupling dynamics between a spring-mass system and a finite amplitude sloshing system with liquid in a cylindrical tank is investigated. Based on a group of nonlinear coupling equations of six degrees of freedoms, analytical formulae of forces and moments of the liquid large amplitude sloshing were obtained. Nonlinearity of the forces and moments of the sloshing was induced by integrating on final configuration of liquid sloshing and the nonlinear terms in the liquid pressure formula. The symmetry between the formula of Ox and Oy direction proves that the derivation is correct. According to the coupled mechanism, the formulae are available in other liquid-solid coupled systems. Simulations and corresponding experimental results arecompared. It is shown that the forces and moments formulae by integrating on the final sloshing configuration are more reasonable. The omitted high-dimensional modal bases and high-order nonlinear terms and the complexity of sloshing damping are main sources of errors.展开更多
The density and viscosity ratios on partially liquid-filled sloshing with baffle have been investigated numerically in this study.As the key to success in the present simulation,the Coupled Level Set and the Volume of...The density and viscosity ratios on partially liquid-filled sloshing with baffle have been investigated numerically in this study.As the key to success in the present simulation,the Coupled Level Set and the Volume of Fluid(CLSVOF)method and the Immersed Boundary(IB)method are used to capture gas/liquid and fluid/structure interfaces,respectively.Within the CLSVOF method,surface normal in weighting factors is calculated by the level set function,resulting in a more accurate solution.Furthermore,the Tangent of Hyperbola for INterface Capturing(THINC)coupled with the Weighted Linear Interface Calculation(WLIC)scheme is used for capturing moving interface.As a standard practice,we first validate the code by comparing it with experimental results of liquid sloshing,which involves large deformation of interface.In addition to the validation study of the present method,the problems of liquid sloshing with baffle are investigated to understand kinematics and dynamics behaviors under different density and viscosity ratios.展开更多
To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The...To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The free surface motion is simulated by the volume-of-fluid method and the standard k-εturbulence model.Experimental data and numerical results from references are used to validate the accuracy of the proposed simulation model.To study the influence of the sloped bottom on the liquid sloshing,different slope sizes and filling ratios are numerically simulated at the lowest natural frequency.The results reveal that the natural frequency can be determined by the average peak values of hydrodynamic parameters.The natural frequency and pressure loading on the tank walls decrease with the increase in the slope size.The peak pressure on the wall decreases by 5.45 kPa with the increase in the slope ratio from 5%to 20%.However,the relationship between the peak pressure and slope ratio is more significant with lower filling rates.Liquid behavior is more stable and independent with the change of the slope structure at a high filling rate(60%).The results of numerical simulation and modeling are expected to provide reference data for the design and operation of the FLNG system.展开更多
The nonlinear equations of an elastic tank-liquid coupling system subjected to the external excitation are established.By means of the multi-scale method and the singularity theory,the bifurcation behaviors of the sys...The nonlinear equations of an elastic tank-liquid coupling system subjected to the external excitation are established.By means of the multi-scale method and the singularity theory,the bifurcation behaviors of the system are investigated and analyzed.The various nonlinear dynamical behaviors of the coupling system are obtained,which can further explain the relationship between the physical parameters and the bifurcation solutions.The results provide a theoretical basis to the realization of the parameter optimal control.展开更多
The mathematical formulation of sloshing dynamics for a partially liquid filleddewar container driven by the gravity jitter acceleration associated with slew motion isstudied.Explicit mathematical expressions to man...The mathematical formulation of sloshing dynamics for a partially liquid filleddewar container driven by the gravity jitter acceleration associated with slew motion isstudied.Explicit mathematical expressions to manage jitter accelerption associated withslew motion which is acting on the fluid systems in microgravity are derived. Thenumerical computation of sloshing dymamics is based on the non-inertia framecontainer bound coordinate and the solution of time-dependent three-dimensionalformulations of partial differential equations subject to initial and boundary conditions.The numerical computation of fluid viscous stress forces and moment fluctuationsexerted on the dewar container driven by jitter acceleration associated with slew motion is investigated.展开更多
A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this expe...A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.展开更多
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering application...Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.展开更多
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal ...A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.展开更多
A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanis...A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanism of this concept. Effects of the foam-layer thickness, excitation amplitude, and excitation frequency on the sloshing properties are analyzed in detail. It is found that the floating layers of solid foam elements do not evidently affect the fundamental natural sloshing frequency of the liquid tank evidently among the considered cases. At the resonant condition, the maximum wave height and dynamic pressure are greatly reduced as the foam-layer thickness increases. Higher-order pressure components on the tank side gradually vanish with the increase of the foam-layer thickness. Cases with different excitation amplitudes are also analyzed. The phenomenon is observed when the wave breaking in the tank can be suppressed by solid foam elements.展开更多
Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The cr...Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The critical parameters at onset of convection are presented in a large range of two-layer depth ratios from 0.2 to 5.0.Numerical results show that the instability of the two-layer system depends strongly on its depth ratio.When the depth ratio increases,the instability mode changes from mechanical coupling to thermal coupling.Between these two typical coupling modes, a time-dependent oscillation is detected.Nevertheless,traveling wave states are found in the case of oscillatory instability.The oscillation mode results from the competition between Rayleigh instability and Marangoni effect.展开更多
Liquid sloshing is a common phenomenon in the transportation of liquid-cargo tanks.Liquid waves lead to fluctuating forces on the tank walls.If these fluctuations are not predicted or controlled,for example,by using b...Liquid sloshing is a common phenomenon in the transportation of liquid-cargo tanks.Liquid waves lead to fluctuating forces on the tank walls.If these fluctuations are not predicted or controlled,for example,by using baffles,they can lead to large forces and momentums.The volume of fluid(VOF)two-phase numerical model in Open FOAM open-source software has been widely used to model the liquid sloshing.However,a big challenge for modeling the sloshing phenomenon is selecting a suitable turbulence model.Therefore,in the present study,different turbulence models were studied to determine their sloshing phenomenon prediction accuracies.The predictions of these models were validated using experimental data.The turbulence models were ranked by their mean error in predicting the free surface behaviors.The renormalization group(RNG)k-ε and the standard k–ω models were found to be the best and worst turbulence models for modeling the sloshing phenomena,respectively;moreover,the SST k-ω model and v2-f k-ε results were very close to the RNG k-εmodel result.展开更多
Sloshing dynamics for partially filled liquid of superfluid helium Ⅱ in a rotating dewar container in resPonse to axial impulse is investigated. The study includes howrotating bubble of suPerfluid he1ium Ⅱ reacts to...Sloshing dynamics for partially filled liquid of superfluid helium Ⅱ in a rotating dewar container in resPonse to axial impulse is investigated. The study includes howrotating bubble of suPerfluid he1ium Ⅱ reacts to the impulse in microgravity, how ampli-tudes of bubble mass center fluctuate with growth and decay of disturbances, how thesedisturbances in fluid system feed back to dewar in terms of force and moment through thedynamics of sloshing waves, and hwo the differences react on the container with andwithout the baffle.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12132002,12202044)。
文摘In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Considering calculation simplicity and operation practicability,the Moving Pulsating Ball Model(MPBM)of large amplitude liquid sloshing is introduced into the calculation of launch vehicle stage separation.Combining the dynamic equation of the model with the energy relationship during"breathing movement",the formula calculating the force of liquid on the rigid body is derived.Compared with the calculations of commercial CFD calculation software,the accuracy of MPBM model is verified.Then,all the external forces and moments are applied to the rigid body of the stages,so that the translational and rotational dynamic equations of the stages are obtained respectively.According to the relative position of the two stages,the geometric shape of the interstage section and the engine of the second stage,the minimum clearance in the separation process can be decided to guarantee that the separation process is safe.
基金supported by the National Natural Science Foundation of China(Grant No.51979130).
文摘The production of hydrogen on offshore platform can decrease reliance on the power grid,mitigate transmission losses of electricity,and diminish investment costs for subsea cables.In this study,the hydrodynamic performances of platforms equipped with two types of tanks separately are evaluated and are comprehensively compared with each other.The Volume of Fluid(VOF)two-phase flow model and the Shear−Stress Transport(SST)k−omega turbulence model are applied to simulate the motion responses of the C-type and Moss-type tanks under the same excitation force of platform based on the time-frequency response results of platforms.Comparisons are made among the shape of the liquid hydrogen surface,variations of the wall pressures,changes of the gas-liquid temperatures,and the pressure drop phenomena induced by phase changes inside the tanks.The results indicate that the interaction between wave-induced excitation force and sloshing force from tanks can either increase or decrease the amplitude of platform’s motion.Meanwhile,the thermodynamic responses of liquid hydrogen sloshing inside the tanks correlate positively with the dynamic behavior.Compared with Moss-type tanks,the sloshing of liquid hydrogen in C-type tanks is more intense,accompanied by jetting and breaking wave phenomena.For the C-type tanks,the substantial increase in interfacial area significantly enhances phase change condensation and heat transfer,leading to the rapid decline in temperature and pressure inside the tanks.The results of this study can provide valuable insights for the future design of floating hydrogen storage platform and the selection of tanks on the platform.
文摘The analogy between the wave equation of liquid and the Navier equations of structural elasticity is examined in detail. By introducing appropriate parameters, the structural counterpart of the liquid sloshing model can be easily built. Therefore, the dynamic analysis of liquid sloshing can be reduced to that of structural elasticity, and the existing FEM structural analysis computer programs can be applied to liquid sloshing analysis without any modification. The present method also reveals the internal relationship between liquid sloshing and structural vibration. The effectiveness and reliability of the method is illustrated by the numerical example.
文摘The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and the forces and rolling moment during turning were calculated. The reliability of the calculation method was validated by comparisons with experimental results. The results showed that during braking,liquid splashes in the tank and the maximum forces and G (the ratio of weight acting on the front axle to the rear axle) are large when A (the ratio of the arch area above the baffle to the area of cross section)≤0.1. When A≥0.2,as the position of the baffle is lowered,the maximum of Fx (the force in direction x) first decreases then increases,and the maximum of Fy (the force in direction y) and G increase. During turning,liquid splashes in the tank and the maximum forces and M (the rolling moment) are large when D (the ratio of the arch area above the baffle to the area of cross section)≤0.2. When D≥0.3,as the position of the baffle is lowered,the maximums of Fy,Fz (the force in direction z) and M increase.
基金the National Natural Science Foundation under Grant No.50579035
文摘A meshless numerical simulation method, the moving-particle semi-implicit method (MPS) is presented in this paper to study the sloshing phenomenon in ocean and naval engineering. As a meshless method, MPS uses particles to replace the mesh in traditional methods, the governing equations are discretized by virtue of the relationship of particles, and the Poisson equation of pressure is solved by incomplete Cholesky conjugate gradient method (ICCG), the free surface is tracked by the change of numerical density. A numerical experiment of viscous liquid sloshing tank was presented and compared with the result got by the difference method with the VOF, and an additional modification step was added to make the simulation more stable. The results show that the MPS method is suitable for the simulation of viscous liquid sloshing, with the advantage in arranging the particles easily, especially on some complex curved surface.
基金Supported by the National Natural Science Foundation of China under Grant No.30770394.
文摘In this research, liquid sloshing behavior in a 2-D rectangular tank was simulated using ANSYS-FLUENT software subject to single or multiple-coupled external excitations (such as sway coupled with roll, and sway and roll coupled with heave). The volume of fluid (VOF) method was used to track the free surface of sloshing. External excitation was imposed through the motion of the tank by using the dynamic mesh technique. The study shows that if the tank is subjected to multiple coupled excitations and resonant excitation frequencies, liquid sloshing will become violent and sloshing loads, including impact on the top wall, will be intensified.
文摘The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for the liquid and elastic damping spacer results in significant analytical difficulties. Two different velocity potential functions are respectively used in the liquid domain above, or below the damping spacer. A coupled frequency equation is obtained by using the pair of velocity potential functions. The numerical and theoretical analysis show that the natural frequency changes according to the location and stiffness of the spacer. Results indicate that the frequency coupling between damping spacer and sloshing liquid is obvious near the free liquid surface. It is shown that the coupling frequency increases with the increase of damping baffle rigidity.
基金financially supported by the National Natural Science Foundation of China(Grant No.52271271)the National Key Research and Development Program of China(Grant No.2022YFE0104500)+1 种基金“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province(Grant No.2022C03023)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ17E090003)。
文摘With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity and randomness,not only affects the stability of the ship but also generates a huge impact force on the wall of the tank.To further investigate liquid tank sloshing,a comprehensive review is given on the research process of the most focused subjects of liquid sloshing.Summarizing the existing research will help to identify issues in the current field and provide useful references.The methods for investigating sloshing,the research progress and the situations worldwide are discussed.The advantages and defects of experiments and numerical simulations are also explored.The problems which need to be explored in the future are subsequently proposed.
文摘Nonlinear coupling dynamics between a spring-mass system and a finite amplitude sloshing system with liquid in a cylindrical tank is investigated. Based on a group of nonlinear coupling equations of six degrees of freedoms, analytical formulae of forces and moments of the liquid large amplitude sloshing were obtained. Nonlinearity of the forces and moments of the sloshing was induced by integrating on final configuration of liquid sloshing and the nonlinear terms in the liquid pressure formula. The symmetry between the formula of Ox and Oy direction proves that the derivation is correct. According to the coupled mechanism, the formulae are available in other liquid-solid coupled systems. Simulations and corresponding experimental results arecompared. It is shown that the forces and moments formulae by integrating on the final sloshing configuration are more reasonable. The omitted high-dimensional modal bases and high-order nonlinear terms and the complexity of sloshing damping are main sources of errors.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20D010009 and LHY22E080004)the Open Fund of Key Laboratory of Flood&Drought Disaster Defense,the Ministry of Water Resources,China(Grant No.KYFB202112071050).
文摘The density and viscosity ratios on partially liquid-filled sloshing with baffle have been investigated numerically in this study.As the key to success in the present simulation,the Coupled Level Set and the Volume of Fluid(CLSVOF)method and the Immersed Boundary(IB)method are used to capture gas/liquid and fluid/structure interfaces,respectively.Within the CLSVOF method,surface normal in weighting factors is calculated by the level set function,resulting in a more accurate solution.Furthermore,the Tangent of Hyperbola for INterface Capturing(THINC)coupled with the Weighted Linear Interface Calculation(WLIC)scheme is used for capturing moving interface.As a standard practice,we first validate the code by comparing it with experimental results of liquid sloshing,which involves large deformation of interface.In addition to the validation study of the present method,the problems of liquid sloshing with baffle are investigated to understand kinematics and dynamics behaviors under different density and viscosity ratios.
基金The National Natural Science Foundation of China(No.51905093)the Natural Science Foundation of Jiangsu Province for Young Scholars(No.BK20180392)。
文摘To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The free surface motion is simulated by the volume-of-fluid method and the standard k-εturbulence model.Experimental data and numerical results from references are used to validate the accuracy of the proposed simulation model.To study the influence of the sloped bottom on the liquid sloshing,different slope sizes and filling ratios are numerically simulated at the lowest natural frequency.The results reveal that the natural frequency can be determined by the average peak values of hydrodynamic parameters.The natural frequency and pressure loading on the tank walls decrease with the increase in the slope size.The peak pressure on the wall decreases by 5.45 kPa with the increase in the slope ratio from 5%to 20%.However,the relationship between the peak pressure and slope ratio is more significant with lower filling rates.Liquid behavior is more stable and independent with the change of the slope structure at a high filling rate(60%).The results of numerical simulation and modeling are expected to provide reference data for the design and operation of the FLNG system.
基金supported by the National Natural Science Foundation of China (No. 10632040)the Tianjin Natural Science Foundation (No. 09JCZDJC26800)
文摘The nonlinear equations of an elastic tank-liquid coupling system subjected to the external excitation are established.By means of the multi-scale method and the singularity theory,the bifurcation behaviors of the system are investigated and analyzed.The various nonlinear dynamical behaviors of the coupling system are obtained,which can further explain the relationship between the physical parameters and the bifurcation solutions.The results provide a theoretical basis to the realization of the parameter optimal control.
文摘The mathematical formulation of sloshing dynamics for a partially liquid filleddewar container driven by the gravity jitter acceleration associated with slew motion isstudied.Explicit mathematical expressions to manage jitter accelerption associated withslew motion which is acting on the fluid systems in microgravity are derived. Thenumerical computation of sloshing dymamics is based on the non-inertia framecontainer bound coordinate and the solution of time-dependent three-dimensionalformulations of partial differential equations subject to initial and boundary conditions.The numerical computation of fluid viscous stress forces and moment fluctuationsexerted on the dewar container driven by jitter acceleration associated with slew motion is investigated.
基金supported by the China Postdoctoral Science Foundation(Grant No.2012M511192)the National Natural Science Foundation of China(Grant Nos.51209080 and 51061130547+5 种基金Open Fund of State Key Laboratory of Coastaland Off shore Engineering(Grant No.LP1207the Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering(Grant No.1213)Qing Lan Project and 333 Project of Jiangsu Province(Grant No.BRA2012130)the Fundamental Research Funds for the Central Universities(Hohai University,Grant No.2012B06514the 111 Project(Grant No.B12032)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120181110084)
文摘A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.
基金supported by the National Natural Science Foundation of China(Grant No.50979059)
文摘Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.
文摘A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709038,51679036 and51739010)the Project funded by China Postdoctoral Science Foundation(Grant No.2018M630289)the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016490111)
文摘A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanism of this concept. Effects of the foam-layer thickness, excitation amplitude, and excitation frequency on the sloshing properties are analyzed in detail. It is found that the floating layers of solid foam elements do not evidently affect the fundamental natural sloshing frequency of the liquid tank evidently among the considered cases. At the resonant condition, the maximum wave height and dynamic pressure are greatly reduced as the foam-layer thickness increases. Higher-order pressure components on the tank side gradually vanish with the increase of the foam-layer thickness. Cases with different excitation amplitudes are also analyzed. The phenomenon is observed when the wave breaking in the tank can be suppressed by solid foam elements.
基金The project supported by the National Natural Science Foundation of China (10372105) and the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-SW-L05)
文摘Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The critical parameters at onset of convection are presented in a large range of two-layer depth ratios from 0.2 to 5.0.Numerical results show that the instability of the two-layer system depends strongly on its depth ratio.When the depth ratio increases,the instability mode changes from mechanical coupling to thermal coupling.Between these two typical coupling modes, a time-dependent oscillation is detected.Nevertheless,traveling wave states are found in the case of oscillatory instability.The oscillation mode results from the competition between Rayleigh instability and Marangoni effect.
文摘Liquid sloshing is a common phenomenon in the transportation of liquid-cargo tanks.Liquid waves lead to fluctuating forces on the tank walls.If these fluctuations are not predicted or controlled,for example,by using baffles,they can lead to large forces and momentums.The volume of fluid(VOF)two-phase numerical model in Open FOAM open-source software has been widely used to model the liquid sloshing.However,a big challenge for modeling the sloshing phenomenon is selecting a suitable turbulence model.Therefore,in the present study,different turbulence models were studied to determine their sloshing phenomenon prediction accuracies.The predictions of these models were validated using experimental data.The turbulence models were ranked by their mean error in predicting the free surface behaviors.The renormalization group(RNG)k-ε and the standard k–ω models were found to be the best and worst turbulence models for modeling the sloshing phenomena,respectively;moreover,the SST k-ω model and v2-f k-ε results were very close to the RNG k-εmodel result.
文摘Sloshing dynamics for partially filled liquid of superfluid helium Ⅱ in a rotating dewar container in resPonse to axial impulse is investigated. The study includes howrotating bubble of suPerfluid he1ium Ⅱ reacts to the impulse in microgravity, how ampli-tudes of bubble mass center fluctuate with growth and decay of disturbances, how thesedisturbances in fluid system feed back to dewar in terms of force and moment through thedynamics of sloshing waves, and hwo the differences react on the container with andwithout the baffle.