Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam...Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.展开更多
This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters wh...This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters while achieving multi-objective cooperative control for target fencing,network connectivity preservation,collision avoidance,and communication efficiency optimization.Firstly,a differential state observer is constructed to obtain the target's unmeasurable states.Secondly,leveraging swarm selforganization principles,a geometric-constraint-free distributed fencing controller is designed by integrating potential field methods with consensus theory.The controller dynamically adjusts inter-UAV distances via single potential function,enabling coordinated optimization of persistent network connectivity and collision-free motion during target fencing.Thirdly,a dual-threshold ETC mechanism based on velocity consensus deviation and fencing error is proposed,which can be triggered based on task features to dynamically adjust the communication frequency,significantly reduce the communication burden and exclude Zeno behavior.Theoretical analysis demonstrates the stability of closed-loop systems.Multi-scenario simulations show that the proposed method can achieve robust fencing under target maneuverability,partial UAV failures,and communication disturbances.展开更多
Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under dir...Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.展开更多
Congestion control is an inherent challenge of V2X(Vehicle to Everything)technologies.Due to the use of a broadcasting mechanism,channel congestion becomes severe with the increase in vehicle density.The researchers s...Congestion control is an inherent challenge of V2X(Vehicle to Everything)technologies.Due to the use of a broadcasting mechanism,channel congestion becomes severe with the increase in vehicle density.The researchers suggested reducing the frequency of packet dissemination to relieve congestion,which caused a rise in road driving risk.Obviously,high-risk vehicles should be able to send messages timely to alarm surrounding vehicles.Therefore,packet dissemination frequency should be set according to the corresponding vehicle’s risk level,which is hard to evaluate.In this paper,a two-stage fuzzy inference model is constructed to evaluate a vehicle’s risk level,while a congestion control algorithm DRG-DCC(Driving Risk Game-Distributed Congestion Control)is proposed.Moreover,HPSO is employed to find optimal solutions.The simulation results show that the proposed method adjusts the transmission frequency based on driving risk,effectively striking a balance between transmission delay and channel busy rate.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
The active vibration control technology has been successfully applied to several helicopter types.However,with the increasing of control scale,traditional centralized control algorithms are experiencing significant in...The active vibration control technology has been successfully applied to several helicopter types.However,with the increasing of control scale,traditional centralized control algorithms are experiencing significant increase of computational complexity and physical implementation challenging.To address this issue,a diffusion collaboration-based distributed Filtered-x Least Mean Square algorithm applied to active vibration control is proposed,drawing inspiration from the concept of data fusion in wireless sensor network.This algorithm distributes the computation load to each node,and constructs the active vibration control network topology of large-scale system by discarding the weak coupling secondary paths between nodes,achieving distributed active vibration control.In order to thoroughly validate the effectiveness and superiority of this algorithm,a helicopter fuselage model is designed as the research object.Firstly,the excellent vibration reduction performance of the proposed algorithm is confirmed through simulations.Subsequently,specialized node control units are developed,which utilize STM32 microcontroller as the processing unit.Further,a distributed control system is constructed based on multi-processor collaboration.Building on this foundation,a large-scale active vibration control experimental platform is established.Based on the platform,experiments are carried out,involving the 4-input 4-output system and the 8-input 8-output system.The experimental results demonstrate that under steady-state harmonic excitation,the proposed algorithm not only ensures control effectiveness but also reduces computational complexity by 50%,exhibiting faster convergence speed compared with traditional centralized algorithms.Under time-varying external excitation,the proposed algorithm demonstrates rapid tracking of vibration changes,with vibration amplitudes at all controlled points declining by over 94%,proving the strong robustness and adaptive capability of the algorithm.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model ...Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model uncertainties,a graph theory-based formation control protocol is designed for the HMASs consisting of Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs).Subsequently,a formation trajectory tracking control strategy employing adaptive Fractional-Order Sliding Mode Control(FOSMC)method is developed,and a Feedback Multilayer Fuzzy Neural Network(FMFNN)is introduced to estimate the lumped uncertainties.This approach empowers HMASs to adaptively follow the expected trajectory and adopt the designated formation configuration,even in the presence of various uncertainties.Additionally,an event-triggered mechanism is incorporated into the controller to reduce the update frequency of the controller and minimize the communication exchange among the agents,and the absence of Zeno behavior is rigorously demonstrated by an integral inequality analysis.Finally,to confirm the effectiveness of the proposed formation control protocol,some numerical simulations are presented.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited late...Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited latency.DDoS attacks pose significant risks to entrepreneurial businesses,preventing legitimate customers from accessing their websites.These attacks require intelligent analytics before processing service requests.Distributed denial of service(DDoS)attacks exploit vulnerabilities in IoT devices by launchingmulti-point distributed attacks.These attacks generate massive traffic that overwhelms the victim’s network,disrupting normal operations.The consequences of distributed denial of service(DDoS)attacks are typically more severe in software-defined networks(SDNs)than in traditional networks.The centralised architecture of these networks can exacerbate existing vulnerabilities,as these weaknesses may not be effectively addressed in this model.The preliminary objective for detecting and mitigating distributed denial of service(DDoS)attacks in software-defined networks(SDN)is to monitor traffic patterns and identify anomalies that indicate distributed denial of service(DDoS)attacks.It implements measures to counter the effects ofDDoS attacks,and ensure network reliability and availability by leveraging the flexibility and programmability of SDN to adaptively respond to threats.The authors present a mechanism that leverages the OpenFlow and sFlow protocols to counter the threats posed by DDoS attacks.The results indicate that the proposed model effectively mitigates the negative effects of DDoS attacks in an SDN environment.展开更多
Distributed matrix-scaled consensus is a kind of generalized cooperative control problem and has broad applications in the field of social network and engineering.This paper addresses the robust distributed matrix-sca...Distributed matrix-scaled consensus is a kind of generalized cooperative control problem and has broad applications in the field of social network and engineering.This paper addresses the robust distributed matrix-scaled consensus of perturbed multi-agent systems suffering from unknown disturbances.Distributed discontinuous protocols are first proposed to drive agents to achieve cluster consensus and suppress the effect of disturbances.Adaptive protocols with time-varying gains obeying differential equations are also designed,which are completely distributed and rely on no global information.Using the boundary layer technique,smooth protocols are proposed to avoid the unexpected chattering effect due to discontinuous functions.As a cost,under the designed smooth protocols,the defined matrix-scaled consensus error tends to a residual set rather than zero,in which the residual bound is arbitrary small by choosing proper parameters.Moreover,distributed dynamic event-based matrix-scalar consensus controllers are also proposed to avoid continuous communications.Simulation examples are provided to further verify the designed algorithms.展开更多
To address the problem of instability and inaccuracy when the Unmanned Aerial Vehicles(UAVs) formation equipped with bearing-only sensor network tracks a maneuvering target,this paper proposes a distributed cooperativ...To address the problem of instability and inaccuracy when the Unmanned Aerial Vehicles(UAVs) formation equipped with bearing-only sensor network tracks a maneuvering target,this paper proposes a distributed cooperative tracking control method considering the effectiveness of passive detection. First, the system model of passive detection in UAV formation is constructed.Then, the Geometric Dilution of Precision(GDOP) of bearing-only sensor nodes pair on the observation plane is analyzed. Building on this foundation, the pairwise form is expanded to obtain the optimal geometric configuration for the entire network. Subsequently, the Distributed Cubature Information Filtering(DCIF) is integrated with the weighted average consensus protocol to design the distributed cooperative observer suitable for the system model, enabling state estimation of the target. Finally, within the distributed architecture, the Nonlinear Model Predictive Controller(NMPC) is designed. This controller autonomously assembles the UAV formation during the assembly phase and forms an optimal detection array. The UAV formation then tracks the target using the virtual geometric center based on the established rigid geometric configuration. The simulation experiments validate that the proposed model and method can enhance the passive detection effectiveness of the UAV formation, thereby achieving stable and efficient distributed cooperative tracking for the maneuvering target.展开更多
This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way ...This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.展开更多
Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited comp...Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed env...A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.展开更多
基金supported by Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.
文摘This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters while achieving multi-objective cooperative control for target fencing,network connectivity preservation,collision avoidance,and communication efficiency optimization.Firstly,a differential state observer is constructed to obtain the target's unmeasurable states.Secondly,leveraging swarm selforganization principles,a geometric-constraint-free distributed fencing controller is designed by integrating potential field methods with consensus theory.The controller dynamically adjusts inter-UAV distances via single potential function,enabling coordinated optimization of persistent network connectivity and collision-free motion during target fencing.Thirdly,a dual-threshold ETC mechanism based on velocity consensus deviation and fencing error is proposed,which can be triggered based on task features to dynamically adjust the communication frequency,significantly reduce the communication burden and exclude Zeno behavior.Theoretical analysis demonstrates the stability of closed-loop systems.Multi-scenario simulations show that the proposed method can achieve robust fencing under target maneuverability,partial UAV failures,and communication disturbances.
基金supported by the National Natural Science Foundation of China(62073113,62003122,62303148)the Fundamental Research Funds for the Central Universities(MCCSE2023A01,JZ2023HGTA0201,JZ2023HGQA0109)the Anhui Provincial Natural Science Foundation(2308085QF204)
文摘Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.
基金supported by the special key project of Chongqing Technology Innovation and Application Development under Grant No.cstc2021jscx-gksbX0057the Special Major Project of Chongqing Technology Innovation and Application Development under Grant No.CSTB2022TIADSTX0003.
文摘Congestion control is an inherent challenge of V2X(Vehicle to Everything)technologies.Due to the use of a broadcasting mechanism,channel congestion becomes severe with the increase in vehicle density.The researchers suggested reducing the frequency of packet dissemination to relieve congestion,which caused a rise in road driving risk.Obviously,high-risk vehicles should be able to send messages timely to alarm surrounding vehicles.Therefore,packet dissemination frequency should be set according to the corresponding vehicle’s risk level,which is hard to evaluate.In this paper,a two-stage fuzzy inference model is constructed to evaluate a vehicle’s risk level,while a congestion control algorithm DRG-DCC(Driving Risk Game-Distributed Congestion Control)is proposed.Moreover,HPSO is employed to find optimal solutions.The simulation results show that the proposed method adjusts the transmission frequency based on driving risk,effectively striking a balance between transmission delay and channel busy rate.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
文摘The active vibration control technology has been successfully applied to several helicopter types.However,with the increasing of control scale,traditional centralized control algorithms are experiencing significant increase of computational complexity and physical implementation challenging.To address this issue,a diffusion collaboration-based distributed Filtered-x Least Mean Square algorithm applied to active vibration control is proposed,drawing inspiration from the concept of data fusion in wireless sensor network.This algorithm distributes the computation load to each node,and constructs the active vibration control network topology of large-scale system by discarding the weak coupling secondary paths between nodes,achieving distributed active vibration control.In order to thoroughly validate the effectiveness and superiority of this algorithm,a helicopter fuselage model is designed as the research object.Firstly,the excellent vibration reduction performance of the proposed algorithm is confirmed through simulations.Subsequently,specialized node control units are developed,which utilize STM32 microcontroller as the processing unit.Further,a distributed control system is constructed based on multi-processor collaboration.Building on this foundation,a large-scale active vibration control experimental platform is established.Based on the platform,experiments are carried out,involving the 4-input 4-output system and the 8-input 8-output system.The experimental results demonstrate that under steady-state harmonic excitation,the proposed algorithm not only ensures control effectiveness but also reduces computational complexity by 50%,exhibiting faster convergence speed compared with traditional centralized algorithms.Under time-varying external excitation,the proposed algorithm demonstrates rapid tracking of vibration changes,with vibration amplitudes at all controlled points declining by over 94%,proving the strong robustness and adaptive capability of the algorithm.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金supported by the Beijing Municipal Science&Technology Commission China(No.Z19111000270000)the National Natural Science Foundation of China(Nos.62203050,51774042).
文摘Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model uncertainties,a graph theory-based formation control protocol is designed for the HMASs consisting of Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs).Subsequently,a formation trajectory tracking control strategy employing adaptive Fractional-Order Sliding Mode Control(FOSMC)method is developed,and a Feedback Multilayer Fuzzy Neural Network(FMFNN)is introduced to estimate the lumped uncertainties.This approach empowers HMASs to adaptively follow the expected trajectory and adopt the designated formation configuration,even in the presence of various uncertainties.Additionally,an event-triggered mechanism is incorporated into the controller to reduce the update frequency of the controller and minimize the communication exchange among the agents,and the absence of Zeno behavior is rigorously demonstrated by an integral inequality analysis.Finally,to confirm the effectiveness of the proposed formation control protocol,some numerical simulations are presented.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited latency.DDoS attacks pose significant risks to entrepreneurial businesses,preventing legitimate customers from accessing their websites.These attacks require intelligent analytics before processing service requests.Distributed denial of service(DDoS)attacks exploit vulnerabilities in IoT devices by launchingmulti-point distributed attacks.These attacks generate massive traffic that overwhelms the victim’s network,disrupting normal operations.The consequences of distributed denial of service(DDoS)attacks are typically more severe in software-defined networks(SDNs)than in traditional networks.The centralised architecture of these networks can exacerbate existing vulnerabilities,as these weaknesses may not be effectively addressed in this model.The preliminary objective for detecting and mitigating distributed denial of service(DDoS)attacks in software-defined networks(SDN)is to monitor traffic patterns and identify anomalies that indicate distributed denial of service(DDoS)attacks.It implements measures to counter the effects ofDDoS attacks,and ensure network reliability and availability by leveraging the flexibility and programmability of SDN to adaptively respond to threats.The authors present a mechanism that leverages the OpenFlow and sFlow protocols to counter the threats posed by DDoS attacks.The results indicate that the proposed model effectively mitigates the negative effects of DDoS attacks in an SDN environment.
基金supported in part by the National Key Research and Development Program of China(No.2020AAA0108905)by the National Natural Science Foundation of China(Nos.62103302,62273262,62088101)+7 种基金by the Shanghai Sailing Program(No.21YF1450300)by the Shanghai Chenguang Program(No.22CGA19)by the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)by the Shanghai Science and Technology Planning Project(Nos.21ZR1466400,22QA1408500)by the Shanghai Municipal Commission of Science and Technology Project(No.19511132101)by the Fundamental Research Funds for the Central Universities(No.2022-5-YB-05)by the Industry,Education and Research Innovation Foundation of Chinese University(Nos.2021ZYA02008,2021ZYA03004)by the Special Fund for Independent Innovation of Aero Engine Corporation of China(No.ZZCX-2021-007).
文摘Distributed matrix-scaled consensus is a kind of generalized cooperative control problem and has broad applications in the field of social network and engineering.This paper addresses the robust distributed matrix-scaled consensus of perturbed multi-agent systems suffering from unknown disturbances.Distributed discontinuous protocols are first proposed to drive agents to achieve cluster consensus and suppress the effect of disturbances.Adaptive protocols with time-varying gains obeying differential equations are also designed,which are completely distributed and rely on no global information.Using the boundary layer technique,smooth protocols are proposed to avoid the unexpected chattering effect due to discontinuous functions.As a cost,under the designed smooth protocols,the defined matrix-scaled consensus error tends to a residual set rather than zero,in which the residual bound is arbitrary small by choosing proper parameters.Moreover,distributed dynamic event-based matrix-scalar consensus controllers are also proposed to avoid continuous communications.Simulation examples are provided to further verify the designed algorithms.
基金supported by the National Natural Science Foundation of China (Nos. 62176214 and 61973253)。
文摘To address the problem of instability and inaccuracy when the Unmanned Aerial Vehicles(UAVs) formation equipped with bearing-only sensor network tracks a maneuvering target,this paper proposes a distributed cooperative tracking control method considering the effectiveness of passive detection. First, the system model of passive detection in UAV formation is constructed.Then, the Geometric Dilution of Precision(GDOP) of bearing-only sensor nodes pair on the observation plane is analyzed. Building on this foundation, the pairwise form is expanded to obtain the optimal geometric configuration for the entire network. Subsequently, the Distributed Cubature Information Filtering(DCIF) is integrated with the weighted average consensus protocol to design the distributed cooperative observer suitable for the system model, enabling state estimation of the target. Finally, within the distributed architecture, the Nonlinear Model Predictive Controller(NMPC) is designed. This controller autonomously assembles the UAV formation during the assembly phase and forms an optimal detection array. The UAV formation then tracks the target using the virtual geometric center based on the established rigid geometric configuration. The simulation experiments validate that the proposed model and method can enhance the passive detection effectiveness of the UAV formation, thereby achieving stable and efficient distributed cooperative tracking for the maneuvering target.
基金National Natural Science Foundation of China(Nos.U22B2040 and 62233003)Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb12)。
文摘This paper aims to study the leader-following consensus of linear multi-agent systems on undirected graphs.Specifically,we construct an adaptive event-based protocol that can be implemented in a fully distributed way by using only local relative information.This protocol is also resource-friendly as it will be updated only when the agent violates the designed event-triggering function.A sufficient condition is proposed for the leader-following consensus of linear multi-agent systems based on the Lyapunov approach,and the Zeno-behavior is excluded.Finally,two numerical examples are provided to illustrate the effectiveness of the theoretical results.
基金Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology(Northeast Electric Power University)Open Fund(MPSS2023⁃01)National Natural Science Foundation of China(No.52477133)+2 种基金Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金National Natural Science Foundation of China(Nos.62173303 and 62273307)Natural Science Foundation of Zhejiang Province(No.LQ24F030023)。
文摘A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.