期刊文献+
共找到2,490篇文章
< 1 2 125 >
每页显示 20 50 100
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
1
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Pitch Motion Analysis of a Submerged Cylindrical Structure in a Two-layer Fluid
2
作者 Champak Kr.Neog Mohammad Hassan 《哈尔滨工程大学学报(英文版)》 2025年第5期984-997,共14页
This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerge... This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerged cylindrical buoy.The system is modeled as a two-layer fluid with infinite horizontal extent and finite depth.The radiation problem is analyzed in the context of linear water waves.The fluid domain is divided into outer and inner zones,and mathematical solutions for the pitch radiating potential are derived for the corresponding boundary valve problem in these zones using the separation of variables approach.Using the matching eigenfunction expansion method,the unknown coefficients in the analytical expression of the radiation potentials are evaluated.The resulting radiation potential is then used to compute the added mass and damping coefficients.Several numerical results for the added mass and damping coefficients are investigated for numerous parameters,particularly the effects of the cylinder radius,the draft of the submerged cylinder,and the density proportion between the two fluid layers across different frequency ranges.The major findings are presented and discussed. 展开更多
关键词 Pitch radiation Eigenfunction expansion two-layer Hydrodynamic coefficients Submerged cylinder Bottom-mounted cylinder
在线阅读 下载PDF
A Two-Layer Network Intrusion Detection Method Incorporating LSTM and Stacking Ensemble Learning
3
作者 Jun Wang Chaoren Ge +4 位作者 Yihong Li Huimin Zhao Qiang Fu Kerang Cao Hoekyung Jung 《Computers, Materials & Continua》 2025年第6期5129-5153,共25页
Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class at... Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security. 展开更多
关键词 two-layer architecture minority class attack stacking ensemble learning network intrusion detection
在线阅读 下载PDF
Early cancer diagnosis via interpretable two-layer machine learning of plasma extracellular vesicle long RNA
4
作者 Shi-Cai Liu Han Zhang 《World Journal of Gastrointestinal Oncology》 2025年第11期254-277,共24页
BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To ... BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To develop an interpretable noninvasive early diagnostic model for PDAC using plasma extracellular vesicle long RNA(EvlRNA).METHODS The diagnostic model was constructed based on plasma EvlRNA data.During the process of establishing the model,EvlRNA-index was introduced,and four algorithms were adopted to calculate EvlRNA-index.After the model was successfully constructed,performance evaluation was conducted.A series of bioinformatics methods were adopted to explore the potential mechanism of EvlRNA-index as the input feature of the model.And the relationship between key characteristics and PDAC were explored at the single-cell level.RESULTS A novel interpretable machine learning framework was developed based on plasma EvlRNA.In this framework,a two-layer classifier was established.A new concept was proposed:EvlRNA-index.Based on EvlRNA-index,a cancer diagnostic model was established,and a good diagnostic effect was achieved.The accuracy of PDACandCPvsHealth-Probabilistic PCA Index-SVM(PDAC and chronic pancreatitis vs health-probabilistic principal component analysis index-support vector machine)(1-18)was 91.51%,with Mathew’s correlation coefficient 0.7760 and area under the curve 0.9560.In the second layer of the model,the accuracy of PDACvsCP-Probabilistic PCA Index-RF(PDAC vs chronic pancreatitis-probabilistic principal component analysis index-random forest)(2-17)was 93.83%,with Mathew’s correlation coefficient 0.8422 and area under the curve 0.9698.Forty-nine PDAC-related genes were identified,among which 16 were known,inferring that the remaining ones were also PDAC-related genes.CONCLUSION An interpretable two-layer machine learning framework was proposed for early diagnosis and prediction of PDAC based on plasma EvlRNA,providing new insights into the clinical value of EvlRNA. 展开更多
关键词 Pancreatic ductal adenocarcinoma Extracellular vesicle long RNA Noninvasive early diagnosis Interpretable machine learning two-layer classifier
暂未订购
A Two-Layer UAV Cooperative Computing Offloading Strategy Based on Deep Reinforcement Learning
5
作者 Zhang Jianfei Wang Zhen +1 位作者 Hu Yun Chang Zheng 《China Communications》 2025年第10期251-268,共18页
In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapi... In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy. 展开更多
关键词 cooperative computational offloading deep reinforcement learning mobile edge computing prioritized experience replay two-layer unmanned aerial vehicles
在线阅读 下载PDF
基于PSO-MPC的锂离子电池快速安全充电策略
6
作者 秦东晨 罗庆洲 +2 位作者 杨俊杰 陈江义 武红霞 《郑州大学学报(工学版)》 北大核心 2025年第5期90-97,共8页
针对锂离子电池充电过程中速度缓慢、过度升温、析锂及过充等问题,提出了基于改进粒子群算法(PSO)的模型预测控制(MPC)充电策略。首先,建立了锂离子电池的等效电路-热-电化学-老化耦合模型,结合等效电路模型与电化学模型的优点,准确预... 针对锂离子电池充电过程中速度缓慢、过度升温、析锂及过充等问题,提出了基于改进粒子群算法(PSO)的模型预测控制(MPC)充电策略。首先,建立了锂离子电池的等效电路-热-电化学-老化耦合模型,结合等效电路模型与电化学模型的优点,准确预测充电过程中的端电压、温度变化及老化机制(如SEI膜增长、活性材料损失和析锂导致的容量损失)。其次,对耦合模型离散化处理,构建充电的空间状态模型,并增加避免热失控、析锂及过充的安全约束。基于空间状态模型,预测充电系统未来状态,并构建描述充电时间及损耗的代价函数。最后,通过改进PSO算法求解最优充电电流序列,实现对充电过程的实时优化。MATLAB/Simulink联合仿真结果表明:该策略在显著缩短充电时间的同时,有效控制了电池温度、端电压及析锂过电势,避免了热失控、析锂和过充等安全问题。通过实验与3种传统充电策略对比,结果表明:该策略充电时间缩短约17.3%~61.1%,且平均每次充电的容量衰减量相对于额定容量降低7.6%~36%,可为锂电池充电优化提供新方法。 展开更多
关键词 锂离子电池 充电策略优化 mpc 电池性能 电池安全 电池容量衰减
在线阅读 下载PDF
基于在线高斯模型驱动MPC的四旋翼轨迹跟踪控制 被引量:1
7
作者 叶大鹏 陈书达 张之得 《飞行力学》 北大核心 2025年第1期56-62,共7页
针对四旋翼飞行器轨迹跟踪控制中模型预测控制(MPC)的标称模型不确定问题,提出了一种基于在线高斯过程回归模型增强的模型预测控制(OGP-MPC)方法,利用在线高斯过程回归(OGP)模型补偿标称模型的动力学误差。设计了一种新的在线GP模型更... 针对四旋翼飞行器轨迹跟踪控制中模型预测控制(MPC)的标称模型不确定问题,提出了一种基于在线高斯过程回归模型增强的模型预测控制(OGP-MPC)方法,利用在线高斯过程回归(OGP)模型补偿标称模型的动力学误差。设计了一种新的在线GP模型更新框架,通过引入子GP模型对新数据进行预处理,提高数据质量,进而迭代更新主GP模型参数,以实现自适应动力学模型误差补偿。仿真结果表明,相比传统MPC和GP-MPC,所提方法在圆形轨迹下的模型精度和跟踪精度提升均超过16%,空间曲线轨迹下提升超过5%。 展开更多
关键词 四旋翼 模型预测控制 数据驱动 高斯过程回归 轨迹跟踪
原文传递
考虑执行器特性的自适应预测时域MPC轨迹跟踪控制
8
作者 许男 尹卓 +1 位作者 张岳韬 郭孔辉 《汽车工程》 北大核心 2025年第10期1847-1860,共14页
为了充分发挥多执行器底盘在自动驾驶车辆轨迹跟踪控制中的动力学性能,本文提出了一种考虑执行器特性对车辆动力学状态影响的稳定性分析方法,并据此设计了预测时域随稳定裕度自适应变化的模型预测(model predictive control,MPC)轨迹跟... 为了充分发挥多执行器底盘在自动驾驶车辆轨迹跟踪控制中的动力学性能,本文提出了一种考虑执行器特性对车辆动力学状态影响的稳定性分析方法,并据此设计了预测时域随稳定裕度自适应变化的模型预测(model predictive control,MPC)轨迹跟踪控制器。针对集成了前后轮主动转向(active front wheel steering-active rear wheel steering,AFS-ARS)的自动驾驶车辆,首先在能量相平面中分析了在执行器影响下的车辆动力学状态变化趋势,结合李雅普诺夫第二法,根据执行器作用下动力学状态变化矢量与前后轮胎力饱和约束的关系确定了一种新型稳定包络边界。然后基于车辆在轨迹跟踪过程中稳定裕度的变化设计了一种自适应预测时域计算方法,结合面向控制的非线性轮胎模型UniTire-Ctrl建立了MPC轨迹跟踪控制器。CarSim-Simulink的联合仿真结果表明,本文提出的新型稳定包络边界更适合考虑执行器特性的车辆稳定边界的估计,并且据此设计的自适应预测时域MPC轨迹跟踪控制器能较好地平衡轨迹跟踪精度与车辆操纵稳定性的关系。 展开更多
关键词 多执行器底盘 模型预测控制 轨迹跟踪控制 拓展稳定性边界 变预测时域
在线阅读 下载PDF
基于分布式MPC的微电网控制策略 被引量:1
9
作者 郭向伟 阿斯楞 +3 位作者 张曼 朱皓斌 李峰 李博通 《智慧电力》 北大核心 2025年第2期41-48,64,共9页
为解决集中式优化控制无法应对大量电动汽车(EV)随机接入微电网引起的功率波动问题,提出了基于分布式模型预测控制(MPC)的微电网控制策略。首先,建立EV参与需求响应的可行时间模型来描述EV的充放电事件,评估各时戳下EV个体参与需求响应... 为解决集中式优化控制无法应对大量电动汽车(EV)随机接入微电网引起的功率波动问题,提出了基于分布式模型预测控制(MPC)的微电网控制策略。首先,建立EV参与需求响应的可行时间模型来描述EV的充放电事件,评估各时戳下EV个体参与需求响应的可能性。其次,基于MPC得到每辆EV的最优出力计划,利用碳配额机制并结合实时电价,引导EV用户积极参与需求响应。最后,通过算例分析表明,所提出的微电网控制策略可有效应对EV随机性引起的微电网波动性问题,并能根据实时更新的状态信息调整充电/放电计划,保证微电网稳定经济运行。 展开更多
关键词 mpc EV 碳配额 微电网
在线阅读 下载PDF
基于NSGA-Ⅱ优化的电动汽车热管理系统MPC策略开发及性能
10
作者 戴春江 林文野 +4 位作者 李帅旗 陈翔 宋文吉 冯自平 Frédéric KUZNIK 《储能科学与技术》 北大核心 2025年第6期2200-2214,共15页
电动汽车热管理在保障电动汽车的安全性、提高舒适度和降低能耗等方面具有重要意义,而热管理系统的核心是优良的控制策略。本工作回顾了现有的电动汽车热管理系统控制策略的优点与不足,提出并评价了一种基于NSGA-Ⅱ算法优化的模型预测控... 电动汽车热管理在保障电动汽车的安全性、提高舒适度和降低能耗等方面具有重要意义,而热管理系统的核心是优良的控制策略。本工作回顾了现有的电动汽车热管理系统控制策略的优点与不足,提出并评价了一种基于NSGA-Ⅱ算法优化的模型预测控制(MPC)策略并用于电动汽车的热管理。首先建立了电动汽车热管理系统的仿真模型;随后通过融合MPC策略和NSGA-Ⅱ多目标优化提出了可以实现多目标控制的电动汽车热管理策略;最后通过比较多个工况下不同控制策略对汽车热管理系统性能的影响,以验证所提出的基于NSGA-Ⅱ优化的MPC策略的有效性。研究结果发现,在不同工况下,所提出的MPC策略均可有效控制乘员舱温度和电池温度,减小乘员舱温度和电池温度的波动幅度,削减汽车行驶工况剧烈变化对电池温度的影响;同时,MPC策略可有效降低热管理系统能耗,相对于开关控制策略和PID控制策略可实现可观的节能率,分别达到4%~15%和1%~6%。 展开更多
关键词 热管理 控制优化 mpc NSGA-Ⅱ 电动汽车
在线阅读 下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
11
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
在线阅读 下载PDF
基于TD3-MPC算法的芯片分拣机轨迹规划研究 被引量:1
12
作者 何金山 孟新宇 《凿岩机械气动工具》 2025年第3期86-88,共3页
针对芯片分拣机运动平台在复杂轨迹规划中的高精度需求,文章提出了一种将双延迟深度确定策略梯度算法(twin delayed deep deterministic policy gradient,TD3)与模型预测控制(model predictive control,MPC)相结合的混合控制策略——TD3... 针对芯片分拣机运动平台在复杂轨迹规划中的高精度需求,文章提出了一种将双延迟深度确定策略梯度算法(twin delayed deep deterministic policy gradient,TD3)与模型预测控制(model predictive control,MPC)相结合的混合控制策略——TD3-MPC。仿真实验结果表明,TD3-MPC算法能够有效提高轨迹规划精度,并在复杂轨迹和动态环境中表现出更高的灵活性与稳定性。 展开更多
关键词 TD3 mpc 轨迹规划 芯片分拣机
在线阅读 下载PDF
基于MPC的沥青摊铺机3D摊铺液压找平系统分析
13
作者 孙学壮 赵铁栓 +1 位作者 张斌睿 叶敏 《机床与液压》 北大核心 2025年第20期219-224,共6页
自动找平控制系统的优劣是决定路面摊铺质量的关键因素。为了提高沥青摊铺机液压自动找平控制系统的响应速度,以达到所需平整度要求,基于拓普康毫米级GPS 3D摊铺控制系统,阐述3D找平系统的控制原理,并对摊铺机的工作特性进行分析;对系... 自动找平控制系统的优劣是决定路面摊铺质量的关键因素。为了提高沥青摊铺机液压自动找平控制系统的响应速度,以达到所需平整度要求,基于拓普康毫米级GPS 3D摊铺控制系统,阐述3D找平系统的控制原理,并对摊铺机的工作特性进行分析;对系统各环节进行建模,建立3D液压找平控制系统模型;设计MPC结构和模型控制参数,建立Simulink仿真模型,探索激光接收器安装位置以及采用传统PID控制和MPC控制策略对系统响应时间的影响。结果表明:随着激光接收器安装位置比增大,系统的响应速度提升;相比传统PID控制,采用MPC控制策略的3D找平系统的响应速度提高了50%,其控制效果显著提升,说明改进后的3D摊铺液压找平系统更能满足摊铺路面的平整度要求。 展开更多
关键词 沥青摊铺机 自动找平系统 3D摊铺 mpc 平整度
在线阅读 下载PDF
基于MPC分层控制的自适应巡航策略 被引量:1
14
作者 音建华 牛礼民 +2 位作者 张义奇 司铭 周天鹏 《安徽工业大学学报(自然科学版)》 2025年第1期36-45,71,共11页
为减少车辆追尾等交通事故的发生,同时提升跟车稳定性、经济性和乘坐舒适性,提出1种车辆自适应巡航分层控制(adaptive cruise control,ACC)策略。上层控制器基于模型预测控制(model predictive control,MPC)计算车辆输出期望加速度,并... 为减少车辆追尾等交通事故的发生,同时提升跟车稳定性、经济性和乘坐舒适性,提出1种车辆自适应巡航分层控制(adaptive cruise control,ACC)策略。上层控制器基于模型预测控制(model predictive control,MPC)计算车辆输出期望加速度,并根据行车工况切换进行速度与间距控制;下层控制器基于建立的纯电动汽车逆纵向动力学模型、驱动电机和制动模型优化驱动/制动切换策略,并通过上层输出的期望加速度计算得到期望电机转矩或期望制动管路压力,控制车辆的加速度和速度,达到速度控制或间距控制的目的。在CarSim/Simulink中设置4种典型行车工况进行仿真实验,验证提出ACC策略的性能。结果表明:在定速巡航与跟车巡航工况下,车辆能够快速稳定地跟随设定的初始速度行驶,且与前车始终保持安全车距;在紧急制动工况下,车辆能够迅速做出减速反应,与前车保持安全距离;在复杂工况下,车辆沿着期望路径行驶且平稳跟踪前车,车辆跟随的动态响应良好。提出的控制策略在不同行驶工况下均可准确安全地跟踪目标车辆,且可兼顾经济性和舒适性的要求。 展开更多
关键词 自适应巡航 分层控制 模型预测控制(mpc) 智能驾驶 CarSim/Simulink 电动汽车
在线阅读 下载PDF
基于自适应预测时域MPC的轨迹跟踪控制
15
作者 郑讯佳 曹泽义 +2 位作者 陈星 刘辉 高建杰 《汽车安全与节能学报》 北大核心 2025年第5期773-783,共11页
针对自动驾驶车辆轨迹跟踪控制中通常未考虑道路曲率和车速信息的问题,为抑制车辆轨迹跟踪过程中的横向偏差并增强控制系统的抗干扰性,提出了一种结合模糊控制策略的时域自适应调整模型预测控制(MPC)轨迹跟踪控制算法。通过建立车辆的... 针对自动驾驶车辆轨迹跟踪控制中通常未考虑道路曲率和车速信息的问题,为抑制车辆轨迹跟踪过程中的横向偏差并增强控制系统的抗干扰性,提出了一种结合模糊控制策略的时域自适应调整模型预测控制(MPC)轨迹跟踪控制算法。通过建立车辆的运动学模型以及模型预测控制器,设计不同速度工况,将道路曲率和期望车速作为模糊控制输入,利用模糊控制器优化模型预测控制算法的预测时域参数;采用Carsim和Simulink联合仿真,分别在2个不同曲率的轨迹上进行不同速度的轨迹跟踪控制。结果表明:自适应时域模型预测控制器(MPC)在双移线工况下,相比固定时域控制器和线性二次型调节器(LQR),低速(30 km/h)和高速(90 km/h)时横向误差最大降低85.81%和78.86%;在多弯道工况下,低速和高速时横向误差最大降低96.32%和86.4%。该控制策略能显著提升系统跟踪性能,在不同速度工况下能够有效降低轨迹偏差并维持车辆动态稳定性。 展开更多
关键词 自动驾驶 轨迹跟踪 自适应 模型预测控制(mpc)
在线阅读 下载PDF
考虑功率运行点的风电场混合储能MPC控制策略 被引量:1
16
作者 张建辉 滕婕 +2 位作者 李秀慧 贺悝 谭庄熙 《电网与清洁能源》 北大核心 2025年第2期130-137,146,共9页
提出一种考虑运行点的的风电场混合储能模型预测控制(model predictive control,MPC)策略,实现有效平滑风电出力和混合储能系统内部功率分配。首先,以储能系统出力最优为目标,满足并网标准和储能运行约束作为约束条件,推导出平滑风电出... 提出一种考虑运行点的的风电场混合储能模型预测控制(model predictive control,MPC)策略,实现有效平滑风电出力和混合储能系统内部功率分配。首先,以储能系统出力最优为目标,满足并网标准和储能运行约束作为约束条件,推导出平滑风电出力的预测控制模型,调用求解器实现储能出力优化。然后,基于一阶低通滤波解耦内部功率,考虑蓄电池运行点对混合储能功率解耦的影响,以调整超级电容出力为原则,提出改善混合储能内部无效能量交换的滤波参数调整规则,并设计滤波参数模糊控制规则实现自适应控制,有效避免蓄电池-超级电容间无效能量交换,并能延长蓄电池运行寿命。最后,在MATLAB/SIMULINK中搭建风电场-混合储能系统并网模型,并采用实际风电功率数据进行验证,算例表明,相比低通滤波法,所提策略使混合储能能量交换降低44.94%;蓄电池-超级电容间无效能量交换降低99.4%,有效提升混合储能系统整体运行效能。 展开更多
关键词 风电功率平滑 mpc控制 功率运行点 模糊控制 混合储能
在线阅读 下载PDF
基于MPC算法的山地果园智能水肥系统设计
17
作者 张真真 华珊 +3 位作者 华咏竹 李双伟 韩恺源 许敏界 《节水灌溉》 北大核心 2025年第6期30-36,共7页
肥料和水分是山地果园作物生长和培育的基础,灌溉设施和水肥比例不精准会影响山地果园的经济效益,水肥一体机可以按照山地果园作物需肥规律和特点制定合理的施肥灌溉方案。为了解决传统水肥一体机存在的管理粗放,智能化水平低,精准性和... 肥料和水分是山地果园作物生长和培育的基础,灌溉设施和水肥比例不精准会影响山地果园的经济效益,水肥一体机可以按照山地果园作物需肥规律和特点制定合理的施肥灌溉方案。为了解决传统水肥一体机存在的管理粗放,智能化水平低,精准性和实时性差的问题,设计了一套基于模型预测控制(Model Predictive Control,MPC)算法的智慧水肥一体灌溉系统。该系统利用蓝牙mesh组网获取果园内信息,通过WIFI Halow技术实现数据上传,并通过MPC算法计算电动球阀的开度,实现远程精确控制水肥溶液电导率(Electrical Conductance,EC)。试验结果表明,该系统的调节时间为7.3 s,较群体智能优化PID控制缩短了82.4%,超调量为1.32%,较群体智能优化PID控制减少了80.9%。所设计的系统有效地提高了水肥灌溉过程混肥精度,能够节约灌溉所需的水量、减少人工成本、提升生产效率。 展开更多
关键词 模型预测控制(mpc) 水肥一体化 智能水肥系统 山地果园
在线阅读 下载PDF
基于PSO参数自适应MPC路径跟踪控制研究
18
作者 李世豪 甘树坤 吕雪飞 《吉林化工学院学报》 2025年第5期89-94,共6页
针对传统模型预测控制器(MPC)在调试过程中预测时域参数整定效率低、误差大的问题,本文提出一种融合粒子群(PSO)算法的动态时域自适应MPC控制器(PSO-MPC)。该方法通过设计高精度的适应度函数从而构建PSO-MPC协同框架,在每个控制周期基... 针对传统模型预测控制器(MPC)在调试过程中预测时域参数整定效率低、误差大的问题,本文提出一种融合粒子群(PSO)算法的动态时域自适应MPC控制器(PSO-MPC)。该方法通过设计高精度的适应度函数从而构建PSO-MPC协同框架,在每个控制周期基于车辆实时状态,利用PSO算法动态搜索最优预测时域参数,建立时变预测模型以提升轨迹跟踪自适应性。仿真结果表明:在双移线与换道场景下,相较于固定预测时域的MPC方法,所提出的控制器轨迹跟踪误差分别降低35%和37%,验证了动态预测时域优化机制可显著提升复杂轨迹的跟踪精度与动态适应性,为自动驾驶控制策略设计提供了新的技术路径。 展开更多
关键词 mpc 自动驾驶 粒子群算法 轨迹跟踪
在线阅读 下载PDF
基于MPC-IMFAC的船舶路径跟随控制方法研究 被引量:2
19
作者 李诗杰 刘泰序 +2 位作者 刘佳仑 徐诚祺 何家伟 《中国舰船研究》 北大核心 2025年第1期317-325,共9页
[目的]旨在解决环境干扰和模型不确定性下的路径跟随控制问题,特别是外部风浪环境对船舶路径跟随控制的影响。[方法]在模型预测控制(MPC)控制器的基础上,引入改进无模型自适应控制(IMFAC)作为路径跟随控制补偿器,修正船舶状态与预测状... [目的]旨在解决环境干扰和模型不确定性下的路径跟随控制问题,特别是外部风浪环境对船舶路径跟随控制的影响。[方法]在模型预测控制(MPC)控制器的基础上,引入改进无模型自适应控制(IMFAC)作为路径跟随控制补偿器,修正船舶状态与预测状态之间的误差,以解决在突发横风和外部存在风浪等环境干扰下的模型精度不足问题,从而提高路径跟随控制精度。并以缩比KVLCC2船模为对象进行船舶路径跟随控制仿真实验。[结果]仿真结果表明,与传统MPC控制相比,MPC-IMFAC方法使船舶在突发干扰下最大绝对航向误差降低25.4%。在时变环境干扰下绝对航向平均误差减少2.6%。[结论]研究表明,该控制方法在确保路径跟随控制精度的基础上,具备较好的抗干扰能力。 展开更多
关键词 路径跟随控制 模型预测控制 无模型自适应控制 操纵性 运动控制 自适应控制系统
在线阅读 下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
20
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
在线阅读 下载PDF
上一页 1 2 125 下一页 到第
使用帮助 返回顶部