Optical superconducting transition-edge sensor(TES)has been widely used in quantum information,biological imaging,and fluorescence microscopy owing to its high quantum efficiency,low dark count,and photon number resol...Optical superconducting transition-edge sensor(TES)has been widely used in quantum information,biological imaging,and fluorescence microscopy owing to its high quantum efficiency,low dark count,and photon number resolving capability.The temperature sensitivity(α_(I))and current sensitivity(β_(I))are important parameters for optical TESs,which are generally extracted from the complex impedance.Here we present a method to extractα_(I)andβ_(I)based on a two-fluid model and compare the calculated current-voltage curves,pulse response,and theoretical energy resolution with the measured ones.This method shows qualitative agreement that is suitable for further optimization of optical TESs.展开更多
RH vacuum degasser is a very important secondary refining device in the production of high quality steels. The flow field of molten steel in RH system plays a significant role in determining productivity of the equipm...RH vacuum degasser is a very important secondary refining device in the production of high quality steels. The flow field of molten steel in RH system plays a significant role in determining productivity of the equipment. The homogeneous model and VOF method were often used to predict the flow field in RH system, but these kinds of models simplified the interaction between gas bubbles and molten steel. In the present work, a numerical model of a whole RH system, including vacuum degasser, immersed legs and ladle,was built based on gas-liquid two-fluid model, and it could be used to analyze the interaction between argon bubbles and molten steel, to understand the effect of the bubble size to the flow field.展开更多
In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid)...In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid) model and a VOF (volume of fluid) method implemented in the CFD (computational fluid dynamics) software, FLUENT6.3.26. The 2F model gave good agreement with CCFL data in low pressure conditions but did not give good results for high pressure steam-water conditions. In the previous study, the computational grid and schemes were improved in the VOF method to improve calculations in circular tubes, and the calculated CCFL characteristics agreed well with the UPTF (Upper Plenum Test Facility) data at 1.5 MPa. In this study, therefore, using the 2F model and the computational grid previously improved for the VOF calculations, numerical simulations were conducted for steam-water flows at 1.5 MPa under PWR full-scale conditions. In the range of medium gas volumetric fluxes, the calculated CCFL characteristics agreed well with the values calculated by the VOF method and the UPTF data at 1.5 MPa. This indicated that the reference set of the interfacial drag correlations employed in this study could be applied not only to low pressures but also to high pressures.展开更多
Numerical simulation on the resonant magnetic perturbation penetration is carried out by the newly-updated initial value code MDC(MHD@Dalian Code).Based on a set of two-fluid fourfield equations,the bootstrap current,...Numerical simulation on the resonant magnetic perturbation penetration is carried out by the newly-updated initial value code MDC(MHD@Dalian Code).Based on a set of two-fluid fourfield equations,the bootstrap current,parallel,and perpendicular transport effects are included appropriately.Taking into account the bootstrap current,a mode penetration-like phenomenon is found,which is essentially different from the classical tearing mode model.To reveal the influence of the plasma flow on the mode penetration process,E×B drift flow and diamagnetic drift flow are separately applied to compare their effects.Numerical results show that a sufficiently large diamagnetic drift flow can drive a strong stabilizing effect on the neoclassical tearing mode.Furthermore,an oscillation phenomenon of island width is discovered.By analyzing it in depth,it is found that this oscillation phenomenon is due to the negative feedback regulation of pressure on the magnetic island.This physical mechanism is verified again by key parameter scanning.展开更多
A reduced two-fluid model is constructed to investigate the geodesic acoustic mode(GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose ...A reduced two-fluid model is constructed to investigate the geodesic acoustic mode(GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose evolutions are determined by equations derived from the 16-momentum model. Electrons are supposed to obey the Boltzmann distribution responding to the electrostatic oscillation with near ion acoustic velocity. In the large safety factor limit, the GAM frequency is identical with the kinetic one to the order of 1 q2 when zeroing the anisotropy. For general anisotropy, the reduced two-fluid model generates the frequency agreeing well with the kinetic result with arbitrary electron temperature. The present simplified fluid model will be of great use and interest for young researchers and students devoted to plasma physics.展开更多
In the paper, we study a compressible two-fluid model in ℝ3, where γ±>1. The pressure of the two fluids is equal. Different from previous research, we consider that viscosity coefficient both μand λare func...In the paper, we study a compressible two-fluid model in ℝ3, where γ±>1. The pressure of the two fluids is equal. Different from previous research, we consider that viscosity coefficient both μand λare functions of density. The global well-posedness of the three-dimensional compressible two-phase flow model is an open problem due to its dissipative, nonlinear structure. In the paper, setting m±=M±and Z=P−P¯, by exploiting the dissipation structure, we obtain energy estimates for (Z,w,n)and its derivatives, then we obtain the time decay rates for (Z,w,n). So we derive global well-posedness and large time behavior to the three dimensional compressible two-fluid model.展开更多
Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLM...Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLMs.Therefore,in order to better assess the capability of LLMs in the agricultural domain,Agri-Eval was proposed as a benchmark for assessing the knowledge and reasoning ability of LLMs in agriculture.The assessment dataset used in Agri-Eval covered seven major disciplines in the agricultural domain:crop science,horticulture,plant protection,animal husbandry,forest science,aquaculture science,and grass science,and contained a total of 2283 questions.Among domestic general-purpose LLMs,DeepSeek R1 performed best with an accuracy rate of 75.49%.In the realm of international general-purpose LLMs,Gemini 2.0 pro exp 0205 standed out as the top performer,achieving an accuracy rate of 74.28%.As an LLMs in agriculture vertical,Shennong V2.0 outperformed all the LLMs in China,and the answer accuracy rate of agricultural knowledge exceeded that of all the existing general-purpose LLMs.The launch of Agri-Eval helped the LLM developers to comprehensively evaluate the model's capability in the field of agriculture through a variety of tasks and tests to promote the development of the LLMs in the field of agriculture.展开更多
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha...In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.展开更多
Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is empl...Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.展开更多
The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-bas...The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre...To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.展开更多
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ...Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.展开更多
Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evo...Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evolution,and image synthesis to compare directly with HST,LICIACube,ground-based and Lucy observations of the DART impact.Decomposing ejecta into(1)a highvelocity(~1600 m/s)plume exhibiting Na/K resonance,(2)a low-velocity(~1 m/s)conical component shaped by binary gravity and solar radiation pressure,and(3)meter-scale boulders,we quantify each component’s mass and momentum.Fitting photometric decay curves and morphological evolution yields size-velocity distributions and,via scaling laws,estimates of Dimorphos’bulk density,cratering parameters,and cohesive strength that agree with dynamical constraints.Photometric ejecta modeling therefore provides a robust route to constrain momentum enhancement and target properties,improving predictive capability for kinetic-deflection missions.展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy...Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.展开更多
Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we ...Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we developed the BETR-Urban-Rural-Veg model to quantitatively evaluate the influences of both natural vegetation and crops on the multimedia transport processes of Phenanthrene(PHE)and Benzo(a)pyrene(BaP)in mainland of China.The geographic distribution of polycyclic aromatic hydrocarbon(PAH)emissions and concentrations were consistent,displaying higher levels in northern China while lower levels in southern China.Under seasonal simulations,for both natural vegetation and crops,PAH concentrations in winter and spring were 1.5 to 27-fold higher than in summer and autumn,especially for PHE.Owing to the higher leaf area index(LAI)of natural vegetation and harvesting of crops,the filter and sequestration effect of natural vegetation was stronger than crops,while the seasonal changes of PAH concentrations in crops were more significant than natural vegetation.Temperature,precipitation rates and LAI might have important influences on seasonal concentrations and overall persistence of PAHs.PHE was more sensitive to the impacts of seasonal environmental parameters.Under different landscape scenarios,average annual PAH concentrations in natural vegetation were always a little higher than those in crops,and the overall persistence of BaP was greatly affected increasing by 15.15%-16.47%.This improved model provides a useful tool for environmental management.The results of this study are expected to support land use plans and decision-making in China's mainland.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,5...This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.展开更多
基金Project supported by the National Key Basic Research and Development Program of China(Grant No.2017YFA0304003)the National Natural Science Foundation of China(Grant Nos.U1831202,U1731119,U1931123,11773083,and 11873099)+1 种基金the Chinese Academy of Sciences(Grant Nos.QYZDJ-SSW-SLH043 and GJJSTD20180003)Jiangsu Province,China(Grant No.BRA2020411).
文摘Optical superconducting transition-edge sensor(TES)has been widely used in quantum information,biological imaging,and fluorescence microscopy owing to its high quantum efficiency,low dark count,and photon number resolving capability.The temperature sensitivity(α_(I))and current sensitivity(β_(I))are important parameters for optical TESs,which are generally extracted from the complex impedance.Here we present a method to extractα_(I)andβ_(I)based on a two-fluid model and compare the calculated current-voltage curves,pulse response,and theoretical energy resolution with the measured ones.This method shows qualitative agreement that is suitable for further optimization of optical TESs.
文摘RH vacuum degasser is a very important secondary refining device in the production of high quality steels. The flow field of molten steel in RH system plays a significant role in determining productivity of the equipment. The homogeneous model and VOF method were often used to predict the flow field in RH system, but these kinds of models simplified the interaction between gas bubbles and molten steel. In the present work, a numerical model of a whole RH system, including vacuum degasser, immersed legs and ladle,was built based on gas-liquid two-fluid model, and it could be used to analyze the interaction between argon bubbles and molten steel, to understand the effect of the bubble size to the flow field.
文摘In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid) model and a VOF (volume of fluid) method implemented in the CFD (computational fluid dynamics) software, FLUENT6.3.26. The 2F model gave good agreement with CCFL data in low pressure conditions but did not give good results for high pressure steam-water conditions. In the previous study, the computational grid and schemes were improved in the VOF method to improve calculations in circular tubes, and the calculated CCFL characteristics agreed well with the UPTF (Upper Plenum Test Facility) data at 1.5 MPa. In this study, therefore, using the 2F model and the computational grid previously improved for the VOF calculations, numerical simulations were conducted for steam-water flows at 1.5 MPa under PWR full-scale conditions. In the range of medium gas volumetric fluxes, the calculated CCFL characteristics agreed well with the values calculated by the VOF method and the UPTF data at 1.5 MPa. This indicated that the reference set of the interfacial drag correlations employed in this study could be applied not only to low pressures but also to high pressures.
基金supported by the National Key R&D Program of China(No.2022YFE03040001)National Natural Science Foundation of China(Nos.11925501 and 12075048)+1 种基金Chinese Academy of Sciences,Key Laboratory of Geospace Environment,University of Science&Technology of China(No.GE2019-01)Fundamental Research Funds for the Central Universities(No.DUT21GJ204)。
文摘Numerical simulation on the resonant magnetic perturbation penetration is carried out by the newly-updated initial value code MDC(MHD@Dalian Code).Based on a set of two-fluid fourfield equations,the bootstrap current,parallel,and perpendicular transport effects are included appropriately.Taking into account the bootstrap current,a mode penetration-like phenomenon is found,which is essentially different from the classical tearing mode model.To reveal the influence of the plasma flow on the mode penetration process,E×B drift flow and diamagnetic drift flow are separately applied to compare their effects.Numerical results show that a sufficiently large diamagnetic drift flow can drive a strong stabilizing effect on the neoclassical tearing mode.Furthermore,an oscillation phenomenon of island width is discovered.By analyzing it in depth,it is found that this oscillation phenomenon is due to the negative feedback regulation of pressure on the magnetic island.This physical mechanism is verified again by key parameter scanning.
基金supported by the China National Magnetic Confinement Fusion Energy Research Project under Grant No.2015GB120005National Natural Science Foundation of China No.11275260
文摘A reduced two-fluid model is constructed to investigate the geodesic acoustic mode(GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose evolutions are determined by equations derived from the 16-momentum model. Electrons are supposed to obey the Boltzmann distribution responding to the electrostatic oscillation with near ion acoustic velocity. In the large safety factor limit, the GAM frequency is identical with the kinetic one to the order of 1 q2 when zeroing the anisotropy. For general anisotropy, the reduced two-fluid model generates the frequency agreeing well with the kinetic result with arbitrary electron temperature. The present simplified fluid model will be of great use and interest for young researchers and students devoted to plasma physics.
文摘In the paper, we study a compressible two-fluid model in ℝ3, where γ±>1. The pressure of the two fluids is equal. Different from previous research, we consider that viscosity coefficient both μand λare functions of density. The global well-posedness of the three-dimensional compressible two-phase flow model is an open problem due to its dissipative, nonlinear structure. In the paper, setting m±=M±and Z=P−P¯, by exploiting the dissipation structure, we obtain energy estimates for (Z,w,n)and its derivatives, then we obtain the time decay rates for (Z,w,n). So we derive global well-posedness and large time behavior to the three dimensional compressible two-fluid model.
文摘Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLMs.Therefore,in order to better assess the capability of LLMs in the agricultural domain,Agri-Eval was proposed as a benchmark for assessing the knowledge and reasoning ability of LLMs in agriculture.The assessment dataset used in Agri-Eval covered seven major disciplines in the agricultural domain:crop science,horticulture,plant protection,animal husbandry,forest science,aquaculture science,and grass science,and contained a total of 2283 questions.Among domestic general-purpose LLMs,DeepSeek R1 performed best with an accuracy rate of 75.49%.In the realm of international general-purpose LLMs,Gemini 2.0 pro exp 0205 standed out as the top performer,achieving an accuracy rate of 74.28%.As an LLMs in agriculture vertical,Shennong V2.0 outperformed all the LLMs in China,and the answer accuracy rate of agricultural knowledge exceeded that of all the existing general-purpose LLMs.The launch of Agri-Eval helped the LLM developers to comprehensively evaluate the model's capability in the field of agriculture through a variety of tasks and tests to promote the development of the LLMs in the field of agriculture.
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
基金the World Climate Research Programme(WCRP),Climate Variability and Predictability(CLIVAR),and Global Energy and Water Exchanges(GEWEX)for facilitating the coordination of African monsoon researchsupport from the Center for Earth System Modeling,Analysis,and Data at the Pennsylvania State Universitythe support of the Office of Science of the U.S.Department of Energy Biological and Environmental Research as part of the Regional&Global Model Analysis(RGMA)program area。
文摘In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.
文摘Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.
基金supported by the CAS Pioneer Hundred Talents Program and Second Tibetan Plateau Scientific Expedition Research Program(2019QZKK0708)as well as the Basic Research Program of Qinghai Province:Lithospheric Geomagnetic Field of the Qinghai‒Tibet Plateau and the Relationship with Strong Earthquakes(2021-ZJ-969Q).
文摘The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金Funded by State Railway Administration Research Project(No.2023JS007)National Natural Science Foundation of China(No.52438002)+1 种基金Research and Development Programs for Science and Technology of China Railways Corporation(No.J2023G003)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.
文摘Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.
基金supported by the National Natural Science Foundation of China(Grant No.12272018)the National Key Basic Research Project(2022JCJQZD20600).
文摘Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evolution,and image synthesis to compare directly with HST,LICIACube,ground-based and Lucy observations of the DART impact.Decomposing ejecta into(1)a highvelocity(~1600 m/s)plume exhibiting Na/K resonance,(2)a low-velocity(~1 m/s)conical component shaped by binary gravity and solar radiation pressure,and(3)meter-scale boulders,we quantify each component’s mass and momentum.Fitting photometric decay curves and morphological evolution yields size-velocity distributions and,via scaling laws,estimates of Dimorphos’bulk density,cratering parameters,and cohesive strength that agree with dynamical constraints.Photometric ejecta modeling therefore provides a robust route to constrain momentum enhancement and target properties,improving predictive capability for kinetic-deflection missions.
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金financially supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Foundation of China (No. 51925401)the Young Elite Scientists Sponsorship Program by CAST, China (No. 2022QNRC001)。
文摘Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.
基金supported by the National Natural Science Foundation of China(Nos.42107420,U23A20157,and U1910207)Shanxi Province Science Foundation for Young Scholars(No.20210302124363).
文摘Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we developed the BETR-Urban-Rural-Veg model to quantitatively evaluate the influences of both natural vegetation and crops on the multimedia transport processes of Phenanthrene(PHE)and Benzo(a)pyrene(BaP)in mainland of China.The geographic distribution of polycyclic aromatic hydrocarbon(PAH)emissions and concentrations were consistent,displaying higher levels in northern China while lower levels in southern China.Under seasonal simulations,for both natural vegetation and crops,PAH concentrations in winter and spring were 1.5 to 27-fold higher than in summer and autumn,especially for PHE.Owing to the higher leaf area index(LAI)of natural vegetation and harvesting of crops,the filter and sequestration effect of natural vegetation was stronger than crops,while the seasonal changes of PAH concentrations in crops were more significant than natural vegetation.Temperature,precipitation rates and LAI might have important influences on seasonal concentrations and overall persistence of PAHs.PHE was more sensitive to the impacts of seasonal environmental parameters.Under different landscape scenarios,average annual PAH concentrations in natural vegetation were always a little higher than those in crops,and the overall persistence of BaP was greatly affected increasing by 15.15%-16.47%.This improved model provides a useful tool for environmental management.The results of this study are expected to support land use plans and decision-making in China's mainland.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
文摘This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.