In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism ...In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism withφ(0)=0,such aφis called singular,N≥1,n≥3 are integers,tk are the grid points,uk:=u(tk),k=1,2,...,n,∇is the backward difference operator defined by∆uk=uk-uk-1,△is the forward difference operator defined by△uk=uk+1-uk,fk(2≤k≤n-1)are continuous functions.We prove the existence of solutions to this problem by employing the sign condition,the continuation lemma and the upper and lower solutions,respectively.On this basis,we also establish the Ambrosetti-Prodi type results for it.展开更多
Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static...Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quan...Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
In cooperative game theory, a central problem is to allocate fairly the win of the grand coalition to the players who agreed to cooperate and form the grand coalition. Such allocations are obtained by means of values,...In cooperative game theory, a central problem is to allocate fairly the win of the grand coalition to the players who agreed to cooperate and form the grand coalition. Such allocations are obtained by means of values, having some fairness properties, expressed in most cases by groups of axioms. In an earlier work, we solved what we called the Inverse Problem for Semivalues, in which the main result was offering an explicit formula providing the set of all games with an a priori given Semivalue, associated with a given weight vector. However, in this set there is an infinite set of games for which the Semivalues are not coalitional rational, perhaps not efficient, so that these are not fair practical solutions of the above fundamental problem. Among the Semivalues, coalitional rational solutions for the Shapley Value and the Banzhaf Value have been given in two more recent works. In the present paper, based upon a general potential basis, relative to Semivalues, for a given game and a given Semivalue, we solve the connected problem: in the Inverse Set, find out a game with the same Semivalue, which is also coalitional rational. Several examples will illustrate the corresponding numerical technique.展开更多
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
The existence condition of the solution of special nonlinear penalized equation of the linear complementarity problems is obtained by the relationship between penalized equations and an absolute value equation. Newton...The existence condition of the solution of special nonlinear penalized equation of the linear complementarity problems is obtained by the relationship between penalized equations and an absolute value equation. Newton method is used to solve penalized equation, and then the solution of the linear complementarity problems is obtained. We show that the proposed method is globally and superlinearly convergent when the matrix of complementarity problems of its singular values exceeds 0;numerical results show that our proposed method is very effective and efficient.展开更多
In this paper,we investigate the fifth-order modified Korteweg-de Vries(mKdV)equation on the half-line via the Fokas unified transformation approach.We show that the solution u(x,t)of the fifth-order mKdV equation can...In this paper,we investigate the fifth-order modified Korteweg-de Vries(mKdV)equation on the half-line via the Fokas unified transformation approach.We show that the solution u(x,t)of the fifth-order mKdV equation can be represented by the solution of the matrix Riemann-Hilbert problem constructed on the plane of complex spectral parameter θ.The jump matrix L(x,t,θ)has an explicit representation dependent on x,t and it can be represented exactly by the two pairs of spectral functions y(θ),z(θ)(obtained from the initial value u0(x))and Y(θ),Z(θ)(obtained from the boundary conditions v0(t),{vk(t)}_(1)^(4)).Furthermore,the two pairs of spectral functions y(θ),z(θ)and Y(θ),Z(θ)are not independent of each other,but are related to the compatibility condition,the so-called global relation.展开更多
The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation...The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.展开更多
In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point res...In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.展开更多
In this article the computation of the Structured Singular Values (SSV) for the delay eigenvalue problems and polynomial eigenvalue problems is presented and investigated. The comparison of bounds of SSV with the well...In this article the computation of the Structured Singular Values (SSV) for the delay eigenvalue problems and polynomial eigenvalue problems is presented and investigated. The comparison of bounds of SSV with the well-known MATLAB routine mussv is investigated.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed w...By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
To show some theorems on the existence of singular initial value problem with n Laplacian operator, topology method and methods of analysis are employed. Some existence theorems for initial value problems...To show some theorems on the existence of singular initial value problem with n Laplacian operator, topology method and methods of analysis are employed. Some existence theorems for initial value problems with n Laplacian operators are established in three singular cases.展开更多
A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value prob...A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1236104012461035)+1 种基金the Outstanding Youth Fund of Gansu Province(Grant No.24JRRA121)the Scientific Research Ability Improvement Program for Young Teachers of Northwest Normal University(Grant No.NWNU-LKQN2021-17)。
文摘In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism withφ(0)=0,such aφis called singular,N≥1,n≥3 are integers,tk are the grid points,uk:=u(tk),k=1,2,...,n,∇is the backward difference operator defined by∆uk=uk-uk-1,△is the forward difference operator defined by△uk=uk+1-uk,fk(2≤k≤n-1)are continuous functions.We prove the existence of solutions to this problem by employing the sign condition,the continuation lemma and the upper and lower solutions,respectively.On this basis,we also establish the Ambrosetti-Prodi type results for it.
基金Project supported by the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Science and ICT(No.RS-2024-00337001)。
文摘Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by the NSF of Hebei Province(A2022208007)the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)。
文摘Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘In cooperative game theory, a central problem is to allocate fairly the win of the grand coalition to the players who agreed to cooperate and form the grand coalition. Such allocations are obtained by means of values, having some fairness properties, expressed in most cases by groups of axioms. In an earlier work, we solved what we called the Inverse Problem for Semivalues, in which the main result was offering an explicit formula providing the set of all games with an a priori given Semivalue, associated with a given weight vector. However, in this set there is an infinite set of games for which the Semivalues are not coalitional rational, perhaps not efficient, so that these are not fair practical solutions of the above fundamental problem. Among the Semivalues, coalitional rational solutions for the Shapley Value and the Banzhaf Value have been given in two more recent works. In the present paper, based upon a general potential basis, relative to Semivalues, for a given game and a given Semivalue, we solve the connected problem: in the Inverse Set, find out a game with the same Semivalue, which is also coalitional rational. Several examples will illustrate the corresponding numerical technique.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘The existence condition of the solution of special nonlinear penalized equation of the linear complementarity problems is obtained by the relationship between penalized equations and an absolute value equation. Newton method is used to solve penalized equation, and then the solution of the linear complementarity problems is obtained. We show that the proposed method is globally and superlinearly convergent when the matrix of complementarity problems of its singular values exceeds 0;numerical results show that our proposed method is very effective and efficient.
基金supported by the National Natural Science Foundation of China under Grant Nos.12147115 and 11835011the Natural Science Foundation of Anhui Province under Grant No.2108085QA09+3 种基金the University Natural Science Research Project of Anhui Province under Grant No.KJ2021A1094China Postdoctoral Science Foundation under Grant No.2022M712833the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No.22HASTIT019the Natural Science Foundation of Henan Province under Grant No.202300410524
文摘In this paper,we investigate the fifth-order modified Korteweg-de Vries(mKdV)equation on the half-line via the Fokas unified transformation approach.We show that the solution u(x,t)of the fifth-order mKdV equation can be represented by the solution of the matrix Riemann-Hilbert problem constructed on the plane of complex spectral parameter θ.The jump matrix L(x,t,θ)has an explicit representation dependent on x,t and it can be represented exactly by the two pairs of spectral functions y(θ),z(θ)(obtained from the initial value u0(x))and Y(θ),Z(θ)(obtained from the boundary conditions v0(t),{vk(t)}_(1)^(4)).Furthermore,the two pairs of spectral functions y(θ),z(θ)and Y(θ),Z(θ)are not independent of each other,but are related to the compatibility condition,the so-called global relation.
基金Supported by the National Nature Science Foundation of China(12101356,12101357,12071254,11771253)the National Science Foundation of Shandong Province(ZR2021QA065,ZR2020QA009,ZR2021MA047)the China Postdoctoral Science Foundation(2019M662313)。
文摘The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.
基金funded by National Science,Research and Innovation Fund(NSRF)King Mongkut's University of Technology North Bangkok with Contract No.KMUTNB-FF-68-B-46.
文摘In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.
文摘In this article the computation of the Structured Singular Values (SSV) for the delay eigenvalue problems and polynomial eigenvalue problems is presented and investigated. The comparison of bounds of SSV with the well-known MATLAB routine mussv is investigated.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.
文摘To show some theorems on the existence of singular initial value problem with n Laplacian operator, topology method and methods of analysis are employed. Some existence theorems for initial value problems with n Laplacian operators are established in three singular cases.
文摘A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.