Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier T...Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.展开更多
A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolatio...A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolation the article shows the affectivity and the superiority of this algorithm.展开更多
Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides...Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.展开更多
In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the ...In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.展开更多
Wind power generation is subjected to complex and variable meteorological conditions,resulting in intermittent and volatile power generation.Accurate wind power prediction plays a crucial role in enabling the power gr...Wind power generation is subjected to complex and variable meteorological conditions,resulting in intermittent and volatile power generation.Accurate wind power prediction plays a crucial role in enabling the power grid dispatching departments to rationally plan power transmission and energy storage operations.This enhances the efficiency of wind power integration into the grid.It allows grid operators to anticipate and mitigate the impact of wind power fluctuations,significantly improving the resilience of wind farms and the overall power grid.Furthermore,it assists wind farm operators in optimizing the management of power generation facilities and reducing maintenance costs.Despite these benefits,accurate wind power prediction especially in extreme scenarios remains a significant challenge.To address this issue,a novel wind power prediction model based on learning approach is proposed by integrating wavelet transform and Transformer.First,a conditional generative adversarial network(CGAN)generates dynamic extreme scenarios guided by physical constraints and expert rules to ensure realism and capture critical features of wind power fluctuations under extremeconditions.Next,thewavelet transformconvolutional layer is applied to enhance sensitivity to frequency domain characteristics,enabling effective feature extraction fromextreme scenarios for a deeper understanding of input data.The model then leverages the Transformer’s self-attention mechanism to capture global dependencies between features,strengthening its sequence modelling capabilities.Case analyses verify themodel’s superior performance in extreme scenario prediction by effectively capturing local fluctuation featureswhile maintaining a grasp of global trends.Compared to other models,it achieves R-squared(R^(2))as high as 0.95,and the mean absolute error(MAE)and rootmean square error(RMSE)are also significantly lower than those of othermodels,proving its high accuracy and effectiveness in managing complex wind power generation conditions.展开更多
Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embe...Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.展开更多
Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do n...Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.展开更多
Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic framewor...Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic frameworks for complex sedimentary environments and multi-source geological settings.In response,this study proposed an intelligent,automatic,log-seismic integrated stratigraphic correlation method that incorporates wavelet frequency-division transform(WFT)and dynamic time warping(DTW)(also referred to as the WFT-DTW method).This approach integrates seismic data as constraints into stratigraphic correlations,enabling accurate tracking of the seismic marker horizons through WFT.Under the constraints of framework construction,a DTW algorithm was introduced to correlate sublayer boundaries automatically.The effectiveness of the proposed method was verified through a stratigraphic correlation experiment on the SA0 Formation of the Xingshugang block in the Lasaxing oilfield,the Songliao Basin,China.In this block,the target layer exhibits sublayer thicknesses ranging from 5 m to 8 m,an average sandstone thickness of 2.1 m,and pronounced heterogeneity.The verification using 1760 layers in 160 post-test wells indicates that the WFT-DTW method intelligently compared sublayers in zones with underdeveloped faults and distinct marker horizons.As a result,the posterior correlation of 1682 layers was performed,with a coincidence rate of up to 95.6%.The proposed method can complement manual correlation efforts while also providing valuable technical support for the lithologic and sand body characterization of reservoirs.展开更多
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors...Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.展开更多
Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies...Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies.展开更多
Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive met...Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising.展开更多
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photorespo...Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.展开更多
This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method u...This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.展开更多
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters...In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.展开更多
In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum ...In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.展开更多
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t...Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.展开更多
Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wave...Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.展开更多
Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method w...Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.展开更多
基金Project supported by the Open Research Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Grant No. 2008491011)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Grant Nos. 2009585812, 2009586712)+1 种基金the Key Project of Chinese Ministry of Education (Grant No. 20100094120008)supported by the Funds for the Central Universities, Hohai University (Grant No. 2009B00214)
文摘Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.
基金the National Natural Science Committee and Chinese Engineering Physics Institute Foundation(10576013)the National Nature Science Foundation of Henan Province of China(0611053200)+1 种基金the Natural Science Foundation for the Education Department of Henan Province of China(2006110001)the Nature Science Foundation of Henan Institute of Science and Technology(2006055)
文摘A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolation the article shows the affectivity and the superiority of this algorithm.
基金the National Natural Science Foundation of China(No.91753118 and No.21773012)the Fundamental Research Funds for Central Universities。
文摘Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.
基金National Natural Science Foundation of China(No.62176052)。
文摘In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.
基金funded by the Science and Technology Project of State Grid Corporation of China under Grant No.5108-202218280A-2-299-XG.
文摘Wind power generation is subjected to complex and variable meteorological conditions,resulting in intermittent and volatile power generation.Accurate wind power prediction plays a crucial role in enabling the power grid dispatching departments to rationally plan power transmission and energy storage operations.This enhances the efficiency of wind power integration into the grid.It allows grid operators to anticipate and mitigate the impact of wind power fluctuations,significantly improving the resilience of wind farms and the overall power grid.Furthermore,it assists wind farm operators in optimizing the management of power generation facilities and reducing maintenance costs.Despite these benefits,accurate wind power prediction especially in extreme scenarios remains a significant challenge.To address this issue,a novel wind power prediction model based on learning approach is proposed by integrating wavelet transform and Transformer.First,a conditional generative adversarial network(CGAN)generates dynamic extreme scenarios guided by physical constraints and expert rules to ensure realism and capture critical features of wind power fluctuations under extremeconditions.Next,thewavelet transformconvolutional layer is applied to enhance sensitivity to frequency domain characteristics,enabling effective feature extraction fromextreme scenarios for a deeper understanding of input data.The model then leverages the Transformer’s self-attention mechanism to capture global dependencies between features,strengthening its sequence modelling capabilities.Case analyses verify themodel’s superior performance in extreme scenario prediction by effectively capturing local fluctuation featureswhile maintaining a grasp of global trends.Compared to other models,it achieves R-squared(R^(2))as high as 0.95,and the mean absolute error(MAE)and rootmean square error(RMSE)are also significantly lower than those of othermodels,proving its high accuracy and effectiveness in managing complex wind power generation conditions.
基金supported by the researcher supporting Project number(RSPD2025R636),King Saud University,Riyadh,Saudi Arabia.
文摘Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.
基金the National Natural Science Foundation of China(No.62065001)the Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Project(No.202205AC160001)+1 种基金the Science and Technology Programs of Yunnan Provincial Science and Technology Department(No.202101BA070001-054)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association(No.2019FH001(-066))。
文摘Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.
基金funded by the Major Science and Technology Project of China National Petroleum Corporation(No.2023ZZ22YJ01).
文摘Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic frameworks for complex sedimentary environments and multi-source geological settings.In response,this study proposed an intelligent,automatic,log-seismic integrated stratigraphic correlation method that incorporates wavelet frequency-division transform(WFT)and dynamic time warping(DTW)(also referred to as the WFT-DTW method).This approach integrates seismic data as constraints into stratigraphic correlations,enabling accurate tracking of the seismic marker horizons through WFT.Under the constraints of framework construction,a DTW algorithm was introduced to correlate sublayer boundaries automatically.The effectiveness of the proposed method was verified through a stratigraphic correlation experiment on the SA0 Formation of the Xingshugang block in the Lasaxing oilfield,the Songliao Basin,China.In this block,the target layer exhibits sublayer thicknesses ranging from 5 m to 8 m,an average sandstone thickness of 2.1 m,and pronounced heterogeneity.The verification using 1760 layers in 160 post-test wells indicates that the WFT-DTW method intelligently compared sublayers in zones with underdeveloped faults and distinct marker horizons.As a result,the posterior correlation of 1682 layers was performed,with a coincidence rate of up to 95.6%.The proposed method can complement manual correlation efforts while also providing valuable technical support for the lithologic and sand body characterization of reservoirs.
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
文摘Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.
文摘Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies.
文摘Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising.
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2017YFA0403600 and 2016YFA0300404)the National Natural Science Foundation of China (Grant Nos.11874363,11974356 and U1932216)the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP002)。
文摘Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.
文摘This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.
基金National Natural Science Foundation of China(60134010)
文摘In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.
文摘In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA812038)
文摘Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.
基金sponsored by National Science and Technology Major Project of China (No. 2008 ZX 05009-001)
文摘Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.
基金supported by the National Science and Technology Major Project(No.2011ZX05007-006)the 973 Program of China(No.2013CB228604)the major Project of Petrochina(No.2014B-0610)
文摘Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.