As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
Two-dimensional conjugated metal-organic framework(2D c-MOF)nanosheets have garnered significant research interest owing to their suite of distinctive properties.Consequently,diverse synthetic methodologies have been ...Two-dimensional conjugated metal-organic framework(2D c-MOF)nanosheets have garnered significant research interest owing to their suite of distinctive properties.Consequently,diverse synthetic methodologies have been established for the fabrication of 2D c-MOFs exhibiting welldefined nanosheet morphology.In addition,the structural engineering of 2D c-MOF nanosheets for energy storage and conversion has emerged as a prominent research focus.This review comprehensively summarizes recent advancements in 2D c-MOF nanosheets.We commence with a concise overview of diverse synthesis strategies for these materials.Subsequently,progress in their utilization as electrode materials or catalysts for batteries,supercapacitors,and electrocatalysis/photocatalysis is systematically examined.Finally,prevailing challenges and prospective research directions are discussed.Collectively,this review aims to stimulate the development of sophisticated 2D c-MOF nanosheets for high-performance energy applications.展开更多
Nanoscale confinement environments often affect the transport mechanisms of nanofluids.Understanding the dynamic behavior of molecules in two-dimensional(2D)confined channels is of great importance in the areas of sen...Nanoscale confinement environments often affect the transport mechanisms of nanofluids.Understanding the dynamic behavior of molecules in two-dimensional(2D)confined channels is of great importance in the areas of sensing,catalysis and energy storage.As a popular candidate for a new type of gas sensing material,MXenes have the problem of nonselectivity towards polar gases with slow responses,which severely limits their applications.Here,we report a study on regulating the confinement effect of 2D channels between MXene layers through annealing treatment and ion(Na^(+))intercalation for high-performance ammonia(NH_(3))sensing.Firstly,the annealing treatment accurately modulates the size of the 2D channels to effectively block the entry of large-size gas molecules and improve the selectivity for NH_(3).Ab initio molecular dynamics(AIMD)also confirms that the modulated channel size has a special"nano-pumping effect",which can accelerate the dynamic behavior of NH_(3) molecules in the 2D confined space.Moreover,the intercalation of Na+ions increases the adsorption capacity of NH_(3).Therefore,the"nano-pumping effect"and theintercalation of Na+ions effectively enhance the response speed and sensitivity of MXene to NH_(3),respectively.The experimental results show that the modified Ti_(3)C_(2) exhibits high sensitivity(0.17),rapid response(181 s),excellent selectivity and stability towards NH_(3).展开更多
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev...The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m...This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.展开更多
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ...This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.展开更多
LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional...LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.展开更多
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch...Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.展开更多
In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Gen...In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Generalized Orthogonal Matching Pursuit(GOMP)algorithms for solving this problem,we propose the Piecewise Generalized Orthogonal Matching Pursuit(PGOMP)algorithm,by considering the mixed-decaying sparse signals as piecewise sparse signals with two components containing nonzero entries with different decay factors.The algorithm incorporates piecewise selection and deletion to retain the most significant entries according to the sparsity of each component.We provide a theoretical analysis based on the mutual coherence of the measurement matrix and the decay factors of the nonzero entries,establishing a sufficient condition for the PGOMP algorithm to select at least two correct indices in each iteration.Numerical simulations and an image decomposition experiment demonstrate that the proposed algorithm significantly improves the support recovery probability by effectively matching piecewise sparsity with decay factors.展开更多
Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuato...Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuators.Existing methods for fitting hysteresis loops include operator class,differential equation class,and machine learning class.The modeling cost of operator class and differential equation class methods is high,the model complexity is high,and the process of machine learning,such as neural network calculation,is opaque.The physical model framework cannot be directly extracted.Therefore,the sparse identification of nonlinear dynamics(SINDy)algorithm is proposed to fit hysteresis loops.Furthermore,the SINDy algorithm is improved.While the SINDy algorithm builds an orthogonal candidate database for modeling,the sparse regression model is simplified,and the Relay operator is introduced for piecewise fitting to solve the distortion problem of the SINDy algorithm fitting singularities.The Relay-SINDy algorithm proposed in this paper is applied to fitting hysteresis loops.Good performance is obtained with the experimental results of open and closed loops.Compared with the existing methods,the modeling cost and model complexity are reduced,and the modeling accuracy of the hysteresis loop is improved.展开更多
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e...In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.展开更多
Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression pr...Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression process remain substantial challenges.This study proposes the adaptive backward stepwise selection of fast SINDy(ABSS-FSINDy),which integrates statistical learning-based estimation and technical advancements to significantly reduce simulation time.This approach not only provides insights into the conditions under which SINDy performs optimally but also highlights potential failure points,particularly in the context of backward stepwise selection(BSS).By decoding predefined features into textual expressions,ABSS-FSINDy significantly reduces the simulation time compared with conventional symbolic regression methods.We validate the proposed method through a series of numerical experiments involving both planar/spatial dynamics and high-dimensional chaotic systems,including Lotka-Volterra,hyperchaotic Rossler,coupled Lorenz,and Lorenz 96 benchmark systems.The experimental results demonstrate that ABSS-FSINDy autonomously determines optimal hyperparameters within the SINDy framework,overcoming the curse of dimensionality in high-dimensional simulations.This improvement is substantial across both lowand high-dimensional systems,yielding efficiency gains of one to three orders of magnitude.For instance,in a 20D dynamical system,the simulation time is reduced from 107.63 s to just 0.093 s,resulting in a 3-order-of-magnitude improvement in simulation efficiency.This advancement broadens the applicability of SINDy for the identification and reconstruction of high-dimensional dynamical systems.展开更多
Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition....Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately.展开更多
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ...Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.展开更多
3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Des...3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems.展开更多
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef...Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.展开更多
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金supported by the National Natural Science Foundation of China(Nos.22205196 and 52371240)the Natural Science Foundation of Jiangsu Province(No.BK20210790)the start-up fundings from Yangzhou University.
文摘Two-dimensional conjugated metal-organic framework(2D c-MOF)nanosheets have garnered significant research interest owing to their suite of distinctive properties.Consequently,diverse synthetic methodologies have been established for the fabrication of 2D c-MOFs exhibiting welldefined nanosheet morphology.In addition,the structural engineering of 2D c-MOF nanosheets for energy storage and conversion has emerged as a prominent research focus.This review comprehensively summarizes recent advancements in 2D c-MOF nanosheets.We commence with a concise overview of diverse synthesis strategies for these materials.Subsequently,progress in their utilization as electrode materials or catalysts for batteries,supercapacitors,and electrocatalysis/photocatalysis is systematically examined.Finally,prevailing challenges and prospective research directions are discussed.Collectively,this review aims to stimulate the development of sophisticated 2D c-MOF nanosheets for high-performance energy applications.
基金supported by the National Natural Science Foundation of China(Nos.52422505 and 12274124)the Innovative Research Group Project of the National Natural Science Foundation of China(No.52321002).
文摘Nanoscale confinement environments often affect the transport mechanisms of nanofluids.Understanding the dynamic behavior of molecules in two-dimensional(2D)confined channels is of great importance in the areas of sensing,catalysis and energy storage.As a popular candidate for a new type of gas sensing material,MXenes have the problem of nonselectivity towards polar gases with slow responses,which severely limits their applications.Here,we report a study on regulating the confinement effect of 2D channels between MXene layers through annealing treatment and ion(Na^(+))intercalation for high-performance ammonia(NH_(3))sensing.Firstly,the annealing treatment accurately modulates the size of the 2D channels to effectively block the entry of large-size gas molecules and improve the selectivity for NH_(3).Ab initio molecular dynamics(AIMD)also confirms that the modulated channel size has a special"nano-pumping effect",which can accelerate the dynamic behavior of NH_(3) molecules in the 2D confined space.Moreover,the intercalation of Na+ions increases the adsorption capacity of NH_(3).Therefore,the"nano-pumping effect"and theintercalation of Na+ions effectively enhance the response speed and sensitivity of MXene to NH_(3),respectively.The experimental results show that the modified Ti_(3)C_(2) exhibits high sensitivity(0.17),rapid response(181 s),excellent selectivity and stability towards NH_(3).
基金Supported by the National Natural Science Foundation of China(61331019,61490691)
文摘The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the Shihezi University High-Level Talents Research Startup Project(Project No.RCZK202521)the National Natural Science Foundation of China(Grant Nos.12271066,11871121,12171405)+1 种基金the Chongqing Natural Science Foundation Joint Fund for Innovation and Development Project(Project No.CSTB2024NSCQLZX0085)the Chongqing Normal University Foundation(Grant No.23XLB018).
文摘This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.
基金Supported by The Featured Innovation Projects of the General University of Guangdong Province(2023KTSCX096)The Special Projects in Key Areas of Guangdong Province(ZDZX1088)Research Team Project of Guangdong University of Education(2024KYCXTD018)。
文摘This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.
文摘LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.
基金supported by Beijing Natural Science Foundation(Nos.2232037 and 2242035)the National Natural Science Foundation of China(Nos.22005012,22105012 and 51803183)+1 种基金Chunhui Plan Cooperative Project of Ministry of Education(No.202201298)the China Postdoctoral Science Foundation Funded Project(No.2023M733520).
文摘Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.
基金Supported by the National Key R&D Program of China(Grant No.2023YFA1009200)the National Natural Science Foundation of China(Grant Nos.12271079+1 种基金12494552)the Fundamental Research Funds for the Central Universities of China(Grant No.DUT24LAB127)。
文摘In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Generalized Orthogonal Matching Pursuit(GOMP)algorithms for solving this problem,we propose the Piecewise Generalized Orthogonal Matching Pursuit(PGOMP)algorithm,by considering the mixed-decaying sparse signals as piecewise sparse signals with two components containing nonzero entries with different decay factors.The algorithm incorporates piecewise selection and deletion to retain the most significant entries according to the sparsity of each component.We provide a theoretical analysis based on the mutual coherence of the measurement matrix and the decay factors of the nonzero entries,establishing a sufficient condition for the PGOMP algorithm to select at least two correct indices in each iteration.Numerical simulations and an image decomposition experiment demonstrate that the proposed algorithm significantly improves the support recovery probability by effectively matching piecewise sparsity with decay factors.
基金National Natural Science Foundation of China(62203118)。
文摘Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuators.Existing methods for fitting hysteresis loops include operator class,differential equation class,and machine learning class.The modeling cost of operator class and differential equation class methods is high,the model complexity is high,and the process of machine learning,such as neural network calculation,is opaque.The physical model framework cannot be directly extracted.Therefore,the sparse identification of nonlinear dynamics(SINDy)algorithm is proposed to fit hysteresis loops.Furthermore,the SINDy algorithm is improved.While the SINDy algorithm builds an orthogonal candidate database for modeling,the sparse regression model is simplified,and the Relay operator is introduced for piecewise fitting to solve the distortion problem of the SINDy algorithm fitting singularities.The Relay-SINDy algorithm proposed in this paper is applied to fitting hysteresis loops.Good performance is obtained with the experimental results of open and closed loops.Compared with the existing methods,the modeling cost and model complexity are reduced,and the modeling accuracy of the hysteresis loop is improved.
文摘In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.
基金Project supported by the National Natural Science Foundation of China(Nos.12172291,12472357,and 12232015)the Shaanxi Province Outstanding Youth Fund Project(No.2024JC-JCQN-05)the 111 Project(No.BP0719007)。
文摘Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression process remain substantial challenges.This study proposes the adaptive backward stepwise selection of fast SINDy(ABSS-FSINDy),which integrates statistical learning-based estimation and technical advancements to significantly reduce simulation time.This approach not only provides insights into the conditions under which SINDy performs optimally but also highlights potential failure points,particularly in the context of backward stepwise selection(BSS).By decoding predefined features into textual expressions,ABSS-FSINDy significantly reduces the simulation time compared with conventional symbolic regression methods.We validate the proposed method through a series of numerical experiments involving both planar/spatial dynamics and high-dimensional chaotic systems,including Lotka-Volterra,hyperchaotic Rossler,coupled Lorenz,and Lorenz 96 benchmark systems.The experimental results demonstrate that ABSS-FSINDy autonomously determines optimal hyperparameters within the SINDy framework,overcoming the curse of dimensionality in high-dimensional simulations.This improvement is substantial across both lowand high-dimensional systems,yielding efficiency gains of one to three orders of magnitude.For instance,in a 20D dynamical system,the simulation time is reduced from 107.63 s to just 0.093 s,resulting in a 3-order-of-magnitude improvement in simulation efficiency.This advancement broadens the applicability of SINDy for the identification and reconstruction of high-dimensional dynamical systems.
基金supported by National Science and Technology Major Project(Grant No.2017ZX05018-001)。
文摘Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately.
基金supported by the National Key Research and Development Project(No.2019YFA0705403)the National Natural Science Foundation of China(No.T2293693,52273311)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)and the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004,JCYJ20220818100806014)Shenzhen Major Science and Technology Projects(Nos.KCXFZ20240903094013018,KCXFZ20240903094203005)。
文摘Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.
文摘3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems.
基金Supported by National Natural Science Foundation of China(Grant No.52205072).
文摘Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.