In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by ener...In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by energy inequality. To solve the diffusion equation, a fully discrete form is established by employing Crank-Nicolson technique in time and Galerkin finite element method in space. The stability and convergence are proved and the stiffness matrix is given analytically. Three numerical examples are given to confirm our theoretical analysis in which we find that even with the same initial condition, the classical and fractional diffusion equations perform differently but tend to be uniform diffusion at last.展开更多
An implicit variable-step BDF2 scheme is established for solving the space fractional Cahn-Hilliard equation derived from a gradient flow in the negative order Sobolev space H^(-α),α∈(0,1).The Fourier pseudo-spectr...An implicit variable-step BDF2 scheme is established for solving the space fractional Cahn-Hilliard equation derived from a gradient flow in the negative order Sobolev space H^(-α),α∈(0,1).The Fourier pseudo-spectral method is applied for the spatial approximation.The space fractional Cahn-Hilliard model poses significant challenges in theoretical analysis for variable time-stepping algorithms compared to the classical model,primarily due to the introduction of the fractional Laplacian.This issue is settled by developing a general discrete Hölder inequality involving the discretization of the fractional Laplacian.Subsequently,the unique solvability and the modified energy dissipation law are theoretically guaranteed.We further rigorously provided the convergence of the fully discrete scheme by utilizing the newly proved discrete Young-type convolution inequality to deal with the nonlinear term.Numerical examples with various interface widths and mobility are conducted to show the accuracy and the energy decay for different orders of the fractional Laplacian.In particular,we demonstrate that the adaptive time-stepping strategy,compared with the uniform time steps,captures the multiple time scale evolutions of the solution in simulations.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ...Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch...Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.展开更多
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ...Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.展开更多
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef...Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.展开更多
Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of...Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.展开更多
It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament ch...It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament chemical vapor deposition setup,followed by annealing treatment under different temperatures at ambient pressure.The results indicate that when the annealing temperature increases from 700℃ to 1000℃,the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm.Meanwhile,the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase.As the annealing temperature continues to rise to 1100℃,a significant aggregation of Ta-containing compounds is observed in the samples,with no diamond structure detected.This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond.This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond.展开更多
Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials,and in lowdimensional systems this is especially true due to the decrease of screening.In this review,we focus o...Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials,and in lowdimensional systems this is especially true due to the decrease of screening.In this review,we focus on one unique quantum phase induced by the electron-hole interaction in two-dimensional systems,known as“exciton insulators”(EIs).Although this phase of matter has been studied for more than half a century,suitable platforms for its stable realization remain scarce.We provide an overview of the strategies to realize EIs in accessible materials and structures,along with a discussion on some unique properties of EIs stemming from the band structures of these materials.Additionally,signatures in experiments to distinguish EIs are discussed.展开更多
The pursuit of sustainable hydrogen production has positioned water electrolysis as a cornerstone technology for global carbon neutrality.However,sluggish kinetics,catalyst scarcity,and system integration challenges h...The pursuit of sustainable hydrogen production has positioned water electrolysis as a cornerstone technology for global carbon neutrality.However,sluggish kinetics,catalyst scarcity,and system integration challenges hinder its widespread deployment.Ultrathin two-dimensional(2D)materials,with their atomically exposed surfaces,tunable electronic structures,and defect-engineering capabilities,present unique opportunities for next-generation electrocatalysts.This review provides an integrated overview of ultrathin 2D electrocatalysts,discussing their structural diversity,synthetic routes,structure-activity relationships,and mechanistic understanding in water electrolysis processes.Special focus is placed on the translation of 2D materials from laboratory research to practical device implementation,emphasizing challenges such as scalable fabrication,interfacial engineering,and operational durability in realistic electrolyzer environments.The role of advanced characterization techniques in capturing dynamic structural changes and active site evolution is discussed.Finally,we outline future research directions,emphasizing the synergy of machine learning-driven materials discovery,advanced operando characterization,and scalable system integration to accelerate the industrial translation of 2D electrocatalysts for green hydrogen production.展开更多
Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subs...Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subsequent impact on urban structure.Considering the varying travel costs associated with electric and fuel vehicles,we analyze the dynamic choices of households concerning house locations and vehicle types in a two-dimensional monocentric city.A spatial equilibrium is developed to model the interactions between urban density,vehicle age and vehicle type.An agent-based microeconomic residential choice model dynamically coupled with a house rent market is developed to analyze household choices of home locations and vehicle energy types,considering vehicle ages and competition for public charging piles.Key findings from our proposed models show that the proportion of electric vehicles(EVs)peaks at over 50%by the end of the first scrappage period,accompanied by more than a 40%increase in commuting distance and time compared to the scenario with only fuel vehicles.Simulation experiments on a theoretical grid indicate that heterogeneity-induced residential segregation can lead to urban sprawl and congestion.Furthermore,households with EVs tend to be located farther from the city center,and an increase in EV ownership contributes to urban expansion.Our study provides insights into how individuals adapt to EV transitions and the resulting impacts on home locations and land use changes.It offers a novel perspective on the dynamic interactions between EV adoption and urban development.展开更多
The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversari...The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions.展开更多
Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehen...Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field.展开更多
Hydrogen evolution reaction(HER)plays a crucial role in developing clean and renewable hydrogen energy technologies.However,conventional HER catalysts rely on expensive and scarce noble metals,which is a significant c...Hydrogen evolution reaction(HER)plays a crucial role in developing clean and renewable hydrogen energy technologies.However,conventional HER catalysts rely on expensive and scarce noble metals,which is a significant challenge for practical application.Recently,twodimensional transition metal dichalcogenides(2D-TMDs)have emerged as attractive and cost-effective alternatives for efficient electrocatalysis in the HER.Substantial efforts have been dedicated to advancing the synthesis and application of 2D-TMDs.This review highlights the design and synthesis of high-performance 2D-TMDs-based HER electrocatalysts by combining theoretical calculations with experimental methods.Subsequently,recent advances in synthesizing different types of 2D TMDs with enhanced HER activity are summarized.Finally,the conclusion and perspectives of the 2D TMDs-based HER electrocatalysts are discussed.We expect that this review will provide new insights into the design and development of highly efficient 2D TMDs-based HER electrocatalysts for industrial applications.展开更多
We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-o...We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-of-plane negative Poisson's ratio(NPR)phenomenon,originating from its special sawtooth-like structure.The absolute value of the NPR decreases as the number of layers increases.The adsorption of volatile organic compounds(VOCs)including CH_(2)O,C_(2)H_(3)Cl and C_(6)H_(6)by AlO_(2)exhibit small adsorption distance,large adsorption energy,large charge transfer and significant density of states(DOS)changes,indicating the presence of strong interactions.The desorption time of each gas molecule on the AlO_(2)surface is also evaluated,and the results further suggest that the desorption of VOCs can be controlled by changing the temperature to achieve the recycling of AlO_(2).These interesting properties make 2D AlO_(2)a promising material for electronic,mechanical and sensing applications for VOCs.展开更多
Two-dimensional transition metal dichalcogenides(2D TMDCs)have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility,electonic structure,and optical properties.T...Two-dimensional transition metal dichalcogenides(2D TMDCs)have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility,electonic structure,and optical properties.The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties,paving the way for the development of advanced quantum technologies,flexible optoelectronic materials,and straintronic devices.Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques,electronic state variations,and quantum optical applications.This review begins by summarizing the state-of-the-art methods for introducing local strain into 2D TMDCs,followed by an exploration of the impact of local strain engineering on optical properties.The intriguing phenomena resulting from local strain,such as exciton funnelling and anti-funnelling,are also discussed.We then shift the focus to the application of locally strained 2D TMDCs as quantum emitters,with various strategies outlined for modulating the properties of TMDC-based quantum emitters.Finally,we discuss the remaining questions in this field and provide an outlook on the future of local strain engineering on 2D TMDCs.展开更多
The surface transfer doping model has been extensively adopted as a mechanism to account for the generation of hole accumulation layers below hydrogen-terminated diamond(H-diamond)surfaces.To achieve effective surface...The surface transfer doping model has been extensively adopted as a mechanism to account for the generation of hole accumulation layers below hydrogen-terminated diamond(H-diamond)surfaces.To achieve effective surface transfer doping,surface electron acceptor materials with high electron affinity(EA)are required to produce a high density of two-dimensional hole gas(2DHG)on the H-diamond subsurface.We have established ingenious theoretical models to demonstrate that even if these solid materials do not have a high EA value,they remain capable of absorbing electrons from the H-diamond surface by forming a negatively charged interface to act as a surface electron acceptor in the surface transfer doping model.Our calculations,particularly for the local density of states,provide compelling evidence that the effect of an interface with negative charges induces an upward band bending on the H-diamond side.Furthermore,the valence band maximum of the diamond atoms at the interface crosses the Fermi level,giving rise to strong surface transfer p-type doping.These results give a strong theoretical interpretation of the origin of 2DHG on H-diamond surfaces.The proposed guidelines contribute to further improvements in the performance of 2DHG H-diamond field effect transistors.展开更多
In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditio...In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.展开更多
文摘In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by energy inequality. To solve the diffusion equation, a fully discrete form is established by employing Crank-Nicolson technique in time and Galerkin finite element method in space. The stability and convergence are proved and the stiffness matrix is given analytically. Three numerical examples are given to confirm our theoretical analysis in which we find that even with the same initial condition, the classical and fractional diffusion equations perform differently but tend to be uniform diffusion at last.
基金support by the National Natural Science Foundation of China(Nos.11701081,11861060)the State Key Program of National Natural Science Foundation of China(No.61833005)ZhiShan Youth Scholar Program of SEU.
文摘An implicit variable-step BDF2 scheme is established for solving the space fractional Cahn-Hilliard equation derived from a gradient flow in the negative order Sobolev space H^(-α),α∈(0,1).The Fourier pseudo-spectral method is applied for the spatial approximation.The space fractional Cahn-Hilliard model poses significant challenges in theoretical analysis for variable time-stepping algorithms compared to the classical model,primarily due to the introduction of the fractional Laplacian.This issue is settled by developing a general discrete Hölder inequality involving the discretization of the fractional Laplacian.Subsequently,the unique solvability and the modified energy dissipation law are theoretically guaranteed.We further rigorously provided the convergence of the fully discrete scheme by utilizing the newly proved discrete Young-type convolution inequality to deal with the nonlinear term.Numerical examples with various interface widths and mobility are conducted to show the accuracy and the energy decay for different orders of the fractional Laplacian.In particular,we demonstrate that the adaptive time-stepping strategy,compared with the uniform time steps,captures the multiple time scale evolutions of the solution in simulations.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金financially supported by the Natural Science Foundation of China(Grant Nos.52372226,52173263,62004167)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant Nos.2022JM-315,2023-JC-QN-0643)+4 种基金the National Key R&D Program of China(Grant No.2022YFB3603703)the Qinchuangyuan High-level Talent Project of Shaanxi(Grant No.QCYRCXM-2022-219)the Ningbo Natural Science Foundation(Grant No.2022J061)the Key Research and Development Program of Shaanxi(Grant No.2023GXLH-091)the Shccig-Qinling Program and the Fundamental Research Funds for the Central Universities。
文摘Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by Beijing Natural Science Foundation(Nos.2232037 and 2242035)the National Natural Science Foundation of China(Nos.22005012,22105012 and 51803183)+1 种基金Chunhui Plan Cooperative Project of Ministry of Education(No.202201298)the China Postdoctoral Science Foundation Funded Project(No.2023M733520).
文摘Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.
基金supported by the National Key Research and Development Project(No.2019YFA0705403)the National Natural Science Foundation of China(No.T2293693,52273311)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)and the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004,JCYJ20220818100806014)Shenzhen Major Science and Technology Projects(Nos.KCXFZ20240903094013018,KCXFZ20240903094203005)。
文摘Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.
基金Supported by National Natural Science Foundation of China(Grant No.52205072).
文摘Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.
基金supported by the National Natural Science Foundation of China(Nos.52272290,21972030,52073119,and 52373210)the Natural Science Foundation of Jilin Province(No.20230101029JC)+1 种基金the Fundamental Research Program of Shanxi Province(No.202303021212159)the Monash University Malaysia–ASEAN grant(No.ASE-000010)。
文摘Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.U1809210)the International Science Technology Cooperation Program of China(Grant No.2014DFR51160)+3 种基金the One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)the National Natural Science Foundation of China(Grant Nos.50972129,50602039,and 52102052)the Fund from Institute of Wenzhou,Zhejiang University(Grant Nos.XMGL-CX-202305 and XMGLKJZX-202307)the Project from Tanghe Scientific&Technology Company(Grant No.KYY-HX-20230024).
文摘It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament chemical vapor deposition setup,followed by annealing treatment under different temperatures at ambient pressure.The results indicate that when the annealing temperature increases from 700℃ to 1000℃,the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm.Meanwhile,the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase.As the annealing temperature continues to rise to 1100℃,a significant aggregation of Ta-containing compounds is observed in the samples,with no diamond structure detected.This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond.This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond.
基金supported by the National Key Research&Development Program of China(Grant Nos.2022YFA1403500 and 2021YFA1400500)the National Science Foundation of China(Grant Nos.62321004,12234001,and 12474215)+1 种基金supported by New Cornerstone Science Foundationa fellowship and a CRF award from the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant Nos.HKUST SRFS2324-6S01 and C7037-22GF)。
文摘Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials,and in lowdimensional systems this is especially true due to the decrease of screening.In this review,we focus on one unique quantum phase induced by the electron-hole interaction in two-dimensional systems,known as“exciton insulators”(EIs).Although this phase of matter has been studied for more than half a century,suitable platforms for its stable realization remain scarce.We provide an overview of the strategies to realize EIs in accessible materials and structures,along with a discussion on some unique properties of EIs stemming from the band structures of these materials.Additionally,signatures in experiments to distinguish EIs are discussed.
文摘The pursuit of sustainable hydrogen production has positioned water electrolysis as a cornerstone technology for global carbon neutrality.However,sluggish kinetics,catalyst scarcity,and system integration challenges hinder its widespread deployment.Ultrathin two-dimensional(2D)materials,with their atomically exposed surfaces,tunable electronic structures,and defect-engineering capabilities,present unique opportunities for next-generation electrocatalysts.This review provides an integrated overview of ultrathin 2D electrocatalysts,discussing their structural diversity,synthetic routes,structure-activity relationships,and mechanistic understanding in water electrolysis processes.Special focus is placed on the translation of 2D materials from laboratory research to practical device implementation,emphasizing challenges such as scalable fabrication,interfacial engineering,and operational durability in realistic electrolyzer environments.The role of advanced characterization techniques in capturing dynamic structural changes and active site evolution is discussed.Finally,we outline future research directions,emphasizing the synergy of machine learning-driven materials discovery,advanced operando characterization,and scalable system integration to accelerate the industrial translation of 2D electrocatalysts for green hydrogen production.
基金supported by National Natural Science Foundation of China(72288101,72361137002,and 72101018)the Dutch Research Council(NWO Grant 482.22.01).
文摘Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subsequent impact on urban structure.Considering the varying travel costs associated with electric and fuel vehicles,we analyze the dynamic choices of households concerning house locations and vehicle types in a two-dimensional monocentric city.A spatial equilibrium is developed to model the interactions between urban density,vehicle age and vehicle type.An agent-based microeconomic residential choice model dynamically coupled with a house rent market is developed to analyze household choices of home locations and vehicle energy types,considering vehicle ages and competition for public charging piles.Key findings from our proposed models show that the proportion of electric vehicles(EVs)peaks at over 50%by the end of the first scrappage period,accompanied by more than a 40%increase in commuting distance and time compared to the scenario with only fuel vehicles.Simulation experiments on a theoretical grid indicate that heterogeneity-induced residential segregation can lead to urban sprawl and congestion.Furthermore,households with EVs tend to be located farther from the city center,and an increase in EV ownership contributes to urban expansion.Our study provides insights into how individuals adapt to EV transitions and the resulting impacts on home locations and land use changes.It offers a novel perspective on the dynamic interactions between EV adoption and urban development.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2020MA092)the Innovation Project for Graduate Students of Ludong University(Grant No.IPGS2024-048).
文摘The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0307800)the National Natural Science Foundation of China (Grant No. 12074377)+2 种基金Fundamental Research Funds for the Central Universities,the International Partnership Program of Chinese Academy of Sciences (Grant No. 211211KYSB20210007)the China Postdoctoral Science Foundation (Grant No. 2024M753465)the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20241893)。
文摘Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field.
基金supported by the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22088102,22279150,22209186)+1 种基金the Beijing Natural Science Foundation(2222080)the Youth Innovation Promotion Association of the CAS(Y2021011)。
文摘Hydrogen evolution reaction(HER)plays a crucial role in developing clean and renewable hydrogen energy technologies.However,conventional HER catalysts rely on expensive and scarce noble metals,which is a significant challenge for practical application.Recently,twodimensional transition metal dichalcogenides(2D-TMDs)have emerged as attractive and cost-effective alternatives for efficient electrocatalysis in the HER.Substantial efforts have been dedicated to advancing the synthesis and application of 2D-TMDs.This review highlights the design and synthesis of high-performance 2D-TMDs-based HER electrocatalysts by combining theoretical calculations with experimental methods.Subsequently,recent advances in synthesizing different types of 2D TMDs with enhanced HER activity are summarized.Finally,the conclusion and perspectives of the 2D TMDs-based HER electrocatalysts are discussed.We expect that this review will provide new insights into the design and development of highly efficient 2D TMDs-based HER electrocatalysts for industrial applications.
基金financially supported by National Natural Science Foundation of China(No.22275149)Fundamental Research Funds for the Central Universities(No.SWU118105)the Next-Generation Advanced Energy Materials Program of BatteroTech Co.,Ltd.
文摘We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-of-plane negative Poisson's ratio(NPR)phenomenon,originating from its special sawtooth-like structure.The absolute value of the NPR decreases as the number of layers increases.The adsorption of volatile organic compounds(VOCs)including CH_(2)O,C_(2)H_(3)Cl and C_(6)H_(6)by AlO_(2)exhibit small adsorption distance,large adsorption energy,large charge transfer and significant density of states(DOS)changes,indicating the presence of strong interactions.The desorption time of each gas molecule on the AlO_(2)surface is also evaluated,and the results further suggest that the desorption of VOCs can be controlled by changing the temperature to achieve the recycling of AlO_(2).These interesting properties make 2D AlO_(2)a promising material for electronic,mechanical and sensing applications for VOCs.
基金support from National Natural Science Foundation of China(Grant Nos.62205223)Natural Science Foundation of Guangdong Province(Grant Nos.2023A1515011455)+6 种基金Science and Technology Innovation Commission of Shenzhen(Grant Nos.20231121120748002)support from Guangdong Introducing Innovative and Entrepreneurial Teams(Grant Nos.2019ZT08L101)Natural Science Foundation of Guangdong Province(Grant Nos.2023A1515110091)Science and Technology Innovation Commission of Shenzhen(Grant Nos.JSGGKQTD20221101115701006)support from National Key R&D Program of China(Grant Nos.2021YFA1401100)National Natural Science Foundation of China(Grant Nos.12104317)Scientific Instrument Developing Project of Shenzhen University(Grant Nos.2023YQ003)。
文摘Two-dimensional transition metal dichalcogenides(2D TMDCs)have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility,electonic structure,and optical properties.The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties,paving the way for the development of advanced quantum technologies,flexible optoelectronic materials,and straintronic devices.Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques,electronic state variations,and quantum optical applications.This review begins by summarizing the state-of-the-art methods for introducing local strain into 2D TMDCs,followed by an exploration of the impact of local strain engineering on optical properties.The intriguing phenomena resulting from local strain,such as exciton funnelling and anti-funnelling,are also discussed.We then shift the focus to the application of locally strained 2D TMDCs as quantum emitters,with various strategies outlined for modulating the properties of TMDC-based quantum emitters.Finally,we discuss the remaining questions in this field and provide an outlook on the future of local strain engineering on 2D TMDCs.
基金supported by the National Nat-ural Science Foundation of China(Nos.62174122,U2241244,and 52302046)Major Program(JD)of Hubei Province(No.2023BAA008)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.2042023kf0116 and 2042023kf1041)the Guangdong Basic and Applied Basic Research Foundation(Nos.2024A1515011764 and 2024A1515010383)the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration(Wuhan University)(No.EMPI2023016).
文摘The surface transfer doping model has been extensively adopted as a mechanism to account for the generation of hole accumulation layers below hydrogen-terminated diamond(H-diamond)surfaces.To achieve effective surface transfer doping,surface electron acceptor materials with high electron affinity(EA)are required to produce a high density of two-dimensional hole gas(2DHG)on the H-diamond subsurface.We have established ingenious theoretical models to demonstrate that even if these solid materials do not have a high EA value,they remain capable of absorbing electrons from the H-diamond surface by forming a negatively charged interface to act as a surface electron acceptor in the surface transfer doping model.Our calculations,particularly for the local density of states,provide compelling evidence that the effect of an interface with negative charges induces an upward band bending on the H-diamond side.Furthermore,the valence band maximum of the diamond atoms at the interface crosses the Fermi level,giving rise to strong surface transfer p-type doping.These results give a strong theoretical interpretation of the origin of 2DHG on H-diamond surfaces.The proposed guidelines contribute to further improvements in the performance of 2DHG H-diamond field effect transistors.
基金support from the National Key Research and Development Program of China(Grant nos.2024YFA1409700 and 2023YFA1407000)the National Natural Science Foundation of China(Grant no.62374158).
文摘In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.