Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in hig...Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.展开更多
Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these field...Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these fields.They can decompose and remove organic pollutants from the aqueous environment,and prepare some fine chemicals.Moreover,they also can carry out some important reactions,such as 02 reduction reaction(ORR),O2 evolution reaction(OER),H2 evolution reaction(HER),CO2 reduction reaction(C02 RR),and N2 fixation(NRR).For catalytic reactions,it is the key to develop high-performance catalysts to meet the demand fortargeted reactions.In recentyears,two-dimensional(2 D) materials have attracted great interest in environmental catalysis due to their unique layered structures,which offer us to make use of their electronic and structural characteristics.Great progress has been made so far,including graphene,black phosphorus,oxides,layered double hydroxides(LDHs),chalcogenides,bismuth-based layered compounds,MXenes,metal organic frameworks(MOFs),covalent organic frameworks(COFs),and others.This content drives us to invite many famous groups in these fields to write the roadmap on two-dimensional nanomaterials for environmental catalysis.We hope that this roadmap can give the useful guidance to researchers in future researches,and provide the research directions.展开更多
Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory ...Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory calculations,we adopt two strategies to improve the HER catalytic activity of Ca_(2)N monolayer:introducing Ca or N vacancy and doping transition metal atoms(TM,refers to Ti,V,Cr,Mn,Fe,Zr,Nb,Mo,Ru,Hf,Ta and W).Interestingly,the Gibbs free energyΔG_(H*)of Ca_(2)N monolayer after introducing N vacancy is reduced to-0.146 e V,showing good HER catalytic activity.It is highlighted that,the HER catalytic activity of Ca_(2)N monolayer can be further enhanced with TM doping,the Gibbs free energyΔG_(H*)of single Mo and double Mn doped Ca_(2)N are predicted to be 0.119 and 0.139 e V,respectively.The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca_(2)N monolayer.展开更多
Magnetotransport measurements are carried out on the A1GaN/A1N/GaN in an SiC heterostructure, which demon- strates the existence of the high-quality two-dimensional electron gas (2DGE) at the A1N/GaN interface. Whil...Magnetotransport measurements are carried out on the A1GaN/A1N/GaN in an SiC heterostructure, which demon- strates the existence of the high-quality two-dimensional electron gas (2DGE) at the A1N/GaN interface. While the carrier concentration reaches 1.32×10^13 cm^-2 and stays relatively unchanged with the decreasing temperature, the mobility of the 2DEG increases to 1.21 × 10^4 cm2/(V.s) at 2 K. The Shubnikov-de Haas (SdH) oscillations are observed in a magnetic field as low as 2.5 T at 2 K. By the measurements and the analyses of the temperature-dependent SdH oscillations, the effective mass of the 2DEC is determined. The ratio of the transport lifetime to the quantum scattering time is 9 in our sample, indicating that small-angle scattering is predominant.展开更多
The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing mo...The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.展开更多
A simulation method for measurement of the cross-section of the^(14)N(n,a)^(11)B reaction with gas and solid samples using a gridded ionization chamber(GIC)has been established.Using the simulation,the experimental sp...A simulation method for measurement of the cross-section of the^(14)N(n,a)^(11)B reaction with gas and solid samples using a gridded ionization chamber(GIC)has been established.Using the simulation,the experimental spectra of both^(14)N(n,a)^(11)B events and background from other reactions can be predicted,and the experimental scheme can be optimized.According to the simulation results,the optimal experimental parameters,including the pressure of the working gas and the compositions of the working gas and the sample,can be determined.In addition,the simulation results can be used to determine the valid event area and calculate the detection efficiency for valid events.A measurement of the cross-sections of the^(14)N(n,a)^(11)B reaction at E_(n)=4.25,4.50,4.75,5.00,5.25,and 5.50 MeV,based on the 4.5-MV Van de Graff accelerator at Peking University(PKU)using a GIC as the detector for the outgoing a particles,has been performed.The good agreement of the spectra from the simulation and experiment demonstrated the universality of this simulation method,which can be used to accurately measure neutroninduced light-charged particle emission reactions.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
THE photosystem Ⅱ light-harvesting chlorophyll a/b protein complex (LHC Ⅱ) is a kind of integral membrane protein complex in the thylakoid membranes of chloroplasts from higher plants and green algae, and its most i...THE photosystem Ⅱ light-harvesting chlorophyll a/b protein complex (LHC Ⅱ) is a kind of integral membrane protein complex in the thylakoid membranes of chloroplasts from higher plants and green algae, and its most important biological function is light harvesting and展开更多
文摘Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.
基金the National Natural Science Foundation of China (Nos. 21603129 & 20871167)National Natural Science Foundation of Shanxi Province (No. 201601D202021)the Foundation of State Key Laboratory of Coal Conversion (No. J1819-903) for the financial support
文摘Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these fields.They can decompose and remove organic pollutants from the aqueous environment,and prepare some fine chemicals.Moreover,they also can carry out some important reactions,such as 02 reduction reaction(ORR),O2 evolution reaction(OER),H2 evolution reaction(HER),CO2 reduction reaction(C02 RR),and N2 fixation(NRR).For catalytic reactions,it is the key to develop high-performance catalysts to meet the demand fortargeted reactions.In recentyears,two-dimensional(2 D) materials have attracted great interest in environmental catalysis due to their unique layered structures,which offer us to make use of their electronic and structural characteristics.Great progress has been made so far,including graphene,black phosphorus,oxides,layered double hydroxides(LDHs),chalcogenides,bismuth-based layered compounds,MXenes,metal organic frameworks(MOFs),covalent organic frameworks(COFs),and others.This content drives us to invite many famous groups in these fields to write the roadmap on two-dimensional nanomaterials for environmental catalysis.We hope that this roadmap can give the useful guidance to researchers in future researches,and provide the research directions.
基金supported by the National Natural Science Foundation of China(No.21973012)the Natural Science Foundation of Fujian Province(Nos.2020J01474,2021J06011 and 2020J01351)the"Qishan Scholar"Scientific Research Project of Fuzhou University。
文摘Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory calculations,we adopt two strategies to improve the HER catalytic activity of Ca_(2)N monolayer:introducing Ca or N vacancy and doping transition metal atoms(TM,refers to Ti,V,Cr,Mn,Fe,Zr,Nb,Mo,Ru,Hf,Ta and W).Interestingly,the Gibbs free energyΔG_(H*)of Ca_(2)N monolayer after introducing N vacancy is reduced to-0.146 e V,showing good HER catalytic activity.It is highlighted that,the HER catalytic activity of Ca_(2)N monolayer can be further enhanced with TM doping,the Gibbs free energyΔG_(H*)of single Mo and double Mn doped Ca_(2)N are predicted to be 0.119 and 0.139 e V,respectively.The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca_(2)N monolayer.
基金Project supported by the National Basic Research Program of China (Grant No.2011CB309606)
文摘Magnetotransport measurements are carried out on the A1GaN/A1N/GaN in an SiC heterostructure, which demon- strates the existence of the high-quality two-dimensional electron gas (2DGE) at the A1N/GaN interface. While the carrier concentration reaches 1.32×10^13 cm^-2 and stays relatively unchanged with the decreasing temperature, the mobility of the 2DEG increases to 1.21 × 10^4 cm2/(V.s) at 2 K. The Shubnikov-de Haas (SdH) oscillations are observed in a magnetic field as low as 2.5 T at 2 K. By the measurements and the analyses of the temperature-dependent SdH oscillations, the effective mass of the 2DEC is determined. The ratio of the transport lifetime to the quantum scattering time is 9 in our sample, indicating that small-angle scattering is predominant.
文摘The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.
基金supported by the National Natural Science Foundation of China(No.12075008)Science and Technology on Nuclear Data Laboratory,China Nuclear Data Centerthe State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFJ22)。
文摘A simulation method for measurement of the cross-section of the^(14)N(n,a)^(11)B reaction with gas and solid samples using a gridded ionization chamber(GIC)has been established.Using the simulation,the experimental spectra of both^(14)N(n,a)^(11)B events and background from other reactions can be predicted,and the experimental scheme can be optimized.According to the simulation results,the optimal experimental parameters,including the pressure of the working gas and the compositions of the working gas and the sample,can be determined.In addition,the simulation results can be used to determine the valid event area and calculate the detection efficiency for valid events.A measurement of the cross-sections of the^(14)N(n,a)^(11)B reaction at E_(n)=4.25,4.50,4.75,5.00,5.25,and 5.50 MeV,based on the 4.5-MV Van de Graff accelerator at Peking University(PKU)using a GIC as the detector for the outgoing a particles,has been performed.The good agreement of the spectra from the simulation and experiment demonstrated the universality of this simulation method,which can be used to accurately measure neutroninduced light-charged particle emission reactions.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
文摘THE photosystem Ⅱ light-harvesting chlorophyll a/b protein complex (LHC Ⅱ) is a kind of integral membrane protein complex in the thylakoid membranes of chloroplasts from higher plants and green algae, and its most important biological function is light harvesting and