The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new pattern...The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new patterns of the rogue waves based on the dynamical equations with two-spatial variables and one-temporal variable,which is a very crucial step to prevent this disaster event at the earliest stage. Along this issue, we present twelve new patterns of the two-dimensional rogue waves, which are reduced from a rational and explicit formula of the solutions for a(2+1)-dimensional Maccari system. The extreme points(lines) of the first-order lumps(rogue waves) are discussed according to their analytical formulas. For the lower-order rogue waves, we show clearly in formula that parameter b_2 plays a significant role to control these patterns.展开更多
Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an a...Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems.展开更多
We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the densit...We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.展开更多
To the nonlinear Schrodinger–Boussinesq system,with the aid of Adler–Moser polynomials we predict the patterns of higher-order rogue wave solutions containing multiple large parameters.The new interesting rogue wave...To the nonlinear Schrodinger–Boussinesq system,with the aid of Adler–Moser polynomials we predict the patterns of higher-order rogue wave solutions containing multiple large parameters.The new interesting rogue wave patterns of a number of true and predicted solutions are graphically illustrated,including fan-,heart-shaped structures and their skewed versions.The results are significant for both experimental and theoretical studies of rogue wave patterns of integrable systems.展开更多
In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described...In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described by four component nonlinear evolution equations(NLEEs).On the background of the Jacobian elliptic function,we obtain the admissible eigenvalues and the corresponding non-periodic eigenfunctions of the model spectrum problem.Then,with the help of the one-fold Darboux transformation and two-fold Darboux transformation,rogue waves on a dn-periodic background and cn-periodic background are derived,respectively.Finally,the corresponding complex dynamical properties and evolutions of the four components are illustrated graphically by choosing suitable parameters.展开更多
This study explores the significance of using two-dimensional shear wave elastography(2D-SWE)to assess liver stiffness(LS)and spleen area(SPA)for predicting post-hepatectomy liver failure(PHLF).By providing a non-inva...This study explores the significance of using two-dimensional shear wave elastography(2D-SWE)to assess liver stiffness(LS)and spleen area(SPA)for predicting post-hepatectomy liver failure(PHLF).By providing a non-invasive method to measure LS,which correlates with the degree of liver fibrosis,and SPA,an indicator of portal hypertension,2D-SWE offers a comprehensive evaluation of a patient’s hepatic status.These advancements are particularly crucial in hepatic surgery,where accurate preoperative assessments are essential for optimizing surgical outcomes and minimizing complications.This letter highlights the prac-tical implications of integrating 2D-SWE into clinical practice,emphasizing its potential to improve patient safety and surgical precision by enhancing the ability to predict PHLF and tailor surgical approaches accordingly.展开更多
A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak...A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.展开更多
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe t...We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.展开更多
As concluded from physical theory and laboratory experiment,it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves;however,the sea states and corresponding nonlin...As concluded from physical theory and laboratory experiment,it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves;however,the sea states and corresponding nonlinearities of real-world rogue wave events remain poorly understood.Three rogue waves were recorded by a directional buoy located in the East China Sea during Typhoon Trami in August 2013.This study used the WAVEWATCHⅢmodel to simulate the sea state conditions pertaining to when and where those rogue waves were observed,based on which a comprehensive and full-scale analysis was performed.From the perspectives of wind and wave fields,wave system tracking,High-Order Spectral method simulation,and some characteristic sea state parameters,we concluded that the rogue waves occurred in sea states dominated by second-order nonlinearities.Moreover,third-order modulational instabilities were suppressed in these events because of the developed or fully developed sea state determined by the typhoon wave system.The method adopted in this study can provide comprehensive and full-scale analysis of rogue waves in the real world.The case studied in this paper is not considered unique,and rules could be found and confirmed in relation to other typhoon sea states through the application of our proposed method.展开更多
Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact b...Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.展开更多
The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particu...The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.展开更多
Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transforma...Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.展开更多
BACKGROUND The clinical management and prognosis differ between benign and malignant solid focal liver lesions(FLLs),as well as among different pathological types of malignant FLLs.Accurate diagnosis of the possible t...BACKGROUND The clinical management and prognosis differ between benign and malignant solid focal liver lesions(FLLs),as well as among different pathological types of malignant FLLs.Accurate diagnosis of the possible types of solid FLLs is important.Our previous study confirmed the value of shear wave elastography(SWE)using maximal elasticity(Emax)as the parameter in the differential diagnosis between benign and malignant FLLs.However,the value of SWE in the differential diagnosis among different pathological types of malignant FLLs has not been proved.AIM To explore the value of two-dimensional SWE(2D-SWE)using Emax in the differential diagnosis of FLLs,especially among different pathological types of malignant FLLs.METHODS All the patients enrolled in this study were diagnosed as benign,malignant or undetermined FLLs by conventional ultrasound.Emax of FLLs and the periphery of FLLs was measured using 2D-SWE and compared between benign and malignant FLLs or among different pathological types of malignant FLLs.RESULTS The study included 32 benign FLLs in 31 patients and 100 malignant FLLs in 96 patients,including 16 cholangiocellular carcinomas(CCCs),72 hepatocellular carcinomas(HCCs)and 12 liver metastases.Thirty-five FLLs were diagnosed as undetermined by conventional ultrasound.There were significant differences between Emax of malignant(2.21±0.57 m/s)and benign(1.59±0.37 m/s)FLLs(P=0.000),and between Emax of the periphery of malignant(1.52±0.39 m/s)and benign(1.36±0.44 m/s)FLLs(P=0.040).Emax of liver metastases(2.73±0.99 m/s)was significantly higher than that of CCCs(2.14±0.34 m/s)and HCCs(2.14±0.46 m/s)(P=0.002).The sensitivity,specificity and accuracy were 71.00%,84.38%and 74.24%respectively,using Emax>1.905 m/s(AUC 0.843)to diagnose as malignant and 23 of 35(65.74%)FLLs with undetermined diagnosis by conventional ultrasound were diagnosed correctly.CONCLUSION Malignant FLLs were stiffer than benign ones and liver metastases were stiffer than primary liver carcinomas.2D-SWE with Emax was a useful complement to conventional ultrasound for the differential diagnosis of FLLs.展开更多
The basic properties of nonlinear ion-acoustic(IA) waves(IAWs), particularly finite amplitude IA rogue waves(IARWs) in a plasma medium(containing pair ions, iso-thermal positrons, and non-thermal electrons) are theore...The basic properties of nonlinear ion-acoustic(IA) waves(IAWs), particularly finite amplitude IA rogue waves(IARWs) in a plasma medium(containing pair ions, iso-thermal positrons, and non-thermal electrons) are theoretically investigated by deriving the nonlinear Schr¨odinger equation(NLSE).The criteria for the modulational instability of IAWs, and the basic features of finite amplitude IARWs are identified.The modulationally stable and unstable regions are determined by the sign of the ratio of the dispersive coefficient to the nonlinear coefficient of NLSE.The latter is analyzed to obtain the region for the existence of the IARWs, which corresponds to the unstable region.The shape of the profile of the rogue waves depends on the non-thermal parameter α and the ratio of electron temperature to positron temperature.It is found that the increase in the value of the non-thermal parameter enhances both the amplitude and width of IARWs, and that the enhancement of electron(positron) temperature reduces(enhances) the amplitude and width of IARWs.It is worth to mention that our present investigation may be useful for understanding the salient features of IARWs in space(viz., upper region of Titan’s atmosphere, cometary comae, and Earth’s ionosphere, etc.)and laboratory(viz., plasma processing reactor and neutral beam sources, etc.) plasmas.展开更多
In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. A...In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically. The main differences between the two types of transformation mentioned above are listed by three items.展开更多
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ...In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.展开更多
In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solut...In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solution. This result shows that rogue wave can come from the extreme behavior of the breather solitary wave for (1+1)-dimensional nonlinear wave fields.展开更多
We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains ...We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains more arbitrary autocephalous parameters.In addition,a lumpoff solution is also derived based on the general lump solutions and a stripe soliton.Furthermore,we figure out instanton/rogue wave solutions via introducing two stripe solitons.Finally,one can better illustrate these propagation phenomena of these solutions by analyzing images.展开更多
The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the tw...The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the two-component NLS equation coupled to the Boussinesq equation. We obtain the bright-bright, bright-dark, and dark-dark soliton solutions to the nonlinear system. We discuss the collision between two solitons. We observe that the collision of bright-bright soliton is inelastic and two solitons oscillating periodically can happen in the two parallel-traveling bright-bright or bright-dark soliton solution. The general breather and rogue wave solutions are also given. Our results show again that there are more abundant dynamical properties for multi-component nonlinear systems.展开更多
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutio...Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.11671219the K.C.Wong Magna Fund in Ningbo Universitythe Scientific Research Foundation of Graduate School of Ningbo University
文摘The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new patterns of the rogue waves based on the dynamical equations with two-spatial variables and one-temporal variable,which is a very crucial step to prevent this disaster event at the earliest stage. Along this issue, we present twelve new patterns of the two-dimensional rogue waves, which are reduced from a rational and explicit formula of the solutions for a(2+1)-dimensional Maccari system. The extreme points(lines) of the first-order lumps(rogue waves) are discussed according to their analytical formulas. For the lower-order rogue waves, we show clearly in formula that parameter b_2 plays a significant role to control these patterns.
基金Project supported by the National Natural Scinece Foundation of China(Grant Nos.11671219,11871446,12071304,and 12071451).
文摘Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems.
基金supported by the National Natural Science Foundation of China (Grant Nos.12375005,12022513,and12235007)the National Safety Academic Fund(Grant No.U2330401)。
文摘We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11871396,12271433)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY036)partly supported by Graduate Student Innovation Project of Northwest University(Grant No.CX2024129)。
文摘To the nonlinear Schrodinger–Boussinesq system,with the aid of Adler–Moser polynomials we predict the patterns of higher-order rogue wave solutions containing multiple large parameters.The new interesting rogue wave patterns of a number of true and predicted solutions are graphically illustrated,including fan-,heart-shaped structures and their skewed versions.The results are significant for both experimental and theoretical studies of rogue wave patterns of integrable systems.
基金supported by the National Natural Science Foundation of China(Grant No.12361052)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2414)+3 种基金the Fundamental Research Funds for the Inner Mongolia Normal University,China(Grant Nos.2022JBTD007,2022JBXC013)Graduate Students'Research and Innovation Fund of Inner Mongolia Autonomous Region(Grant No.B20231053Z)the Key Laboratory of Infinite-Dimensional Hamiltonian System and Its Algorithm Application(Inner Mongolia Normal University),the Ministry of Education(Grant Nos.2023KFZR01,2023KFZR02)the First-Class Disciplines Project,Inner Mongolia Autonomous Region,China(Grant No.YLXKZX-NSD-001)。
文摘In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described by four component nonlinear evolution equations(NLEEs).On the background of the Jacobian elliptic function,we obtain the admissible eigenvalues and the corresponding non-periodic eigenfunctions of the model spectrum problem.Then,with the help of the one-fold Darboux transformation and two-fold Darboux transformation,rogue waves on a dn-periodic background and cn-periodic background are derived,respectively.Finally,the corresponding complex dynamical properties and evolutions of the four components are illustrated graphically by choosing suitable parameters.
基金Supported by Guangdong Medical Science and Technology Research Fund Project,No.A2024475.
文摘This study explores the significance of using two-dimensional shear wave elastography(2D-SWE)to assess liver stiffness(LS)and spleen area(SPA)for predicting post-hepatectomy liver failure(PHLF).By providing a non-invasive method to measure LS,which correlates with the degree of liver fibrosis,and SPA,an indicator of portal hypertension,2D-SWE offers a comprehensive evaluation of a patient’s hepatic status.These advancements are particularly crucial in hepatic surgery,where accurate preoperative assessments are essential for optimizing surgical outcomes and minimizing complications.This letter highlights the prac-tical implications of integrating 2D-SWE into clinical practice,emphasizing its potential to improve patient safety and surgical precision by enhancing the ability to predict PHLF and tailor surgical approaches accordingly.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12061051 and 12461048)。
文摘A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.
基金Supported by National Natural Science Foundation of China under Grant No.60821002/F02
文摘We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402004,2016YFC1401805)
文摘As concluded from physical theory and laboratory experiment,it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves;however,the sea states and corresponding nonlinearities of real-world rogue wave events remain poorly understood.Three rogue waves were recorded by a directional buoy located in the East China Sea during Typhoon Trami in August 2013.This study used the WAVEWATCHⅢmodel to simulate the sea state conditions pertaining to when and where those rogue waves were observed,based on which a comprehensive and full-scale analysis was performed.From the perspectives of wind and wave fields,wave system tracking,High-Order Spectral method simulation,and some characteristic sea state parameters,we concluded that the rogue waves occurred in sea states dominated by second-order nonlinearities.Moreover,third-order modulational instabilities were suppressed in these events because of the developed or fully developed sea state determined by the typhoon wave system.The method adopted in this study can provide comprehensive and full-scale analysis of rogue waves in the real world.The case studied in this paper is not considered unique,and rules could be found and confirmed in relation to other typhoon sea states through the application of our proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61774001)the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ2045)
文摘Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.
基金supported by the National Natural Science Foundation of China (Grant No. 11675054)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213)the Project of Science and Technology Commission of Shanghai Municipality (Grant No. 18dz2271000)。
文摘The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10772110) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y606049, Y6090681, and Y6100257).
文摘Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.
基金Supported by Natural Science Foundation of Shanghai of China,No.19ZR1441500,No.22ZR1458200Science Research Foundation of Shanghai Municipal Health Commission,No.202140378Key Program of Science and Technology Commission Foundation of Changning,Shanghai,China,No.CNKW2020Z04.
文摘BACKGROUND The clinical management and prognosis differ between benign and malignant solid focal liver lesions(FLLs),as well as among different pathological types of malignant FLLs.Accurate diagnosis of the possible types of solid FLLs is important.Our previous study confirmed the value of shear wave elastography(SWE)using maximal elasticity(Emax)as the parameter in the differential diagnosis between benign and malignant FLLs.However,the value of SWE in the differential diagnosis among different pathological types of malignant FLLs has not been proved.AIM To explore the value of two-dimensional SWE(2D-SWE)using Emax in the differential diagnosis of FLLs,especially among different pathological types of malignant FLLs.METHODS All the patients enrolled in this study were diagnosed as benign,malignant or undetermined FLLs by conventional ultrasound.Emax of FLLs and the periphery of FLLs was measured using 2D-SWE and compared between benign and malignant FLLs or among different pathological types of malignant FLLs.RESULTS The study included 32 benign FLLs in 31 patients and 100 malignant FLLs in 96 patients,including 16 cholangiocellular carcinomas(CCCs),72 hepatocellular carcinomas(HCCs)and 12 liver metastases.Thirty-five FLLs were diagnosed as undetermined by conventional ultrasound.There were significant differences between Emax of malignant(2.21±0.57 m/s)and benign(1.59±0.37 m/s)FLLs(P=0.000),and between Emax of the periphery of malignant(1.52±0.39 m/s)and benign(1.36±0.44 m/s)FLLs(P=0.040).Emax of liver metastases(2.73±0.99 m/s)was significantly higher than that of CCCs(2.14±0.34 m/s)and HCCs(2.14±0.46 m/s)(P=0.002).The sensitivity,specificity and accuracy were 71.00%,84.38%and 74.24%respectively,using Emax>1.905 m/s(AUC 0.843)to diagnose as malignant and 23 of 35(65.74%)FLLs with undetermined diagnosis by conventional ultrasound were diagnosed correctly.CONCLUSION Malignant FLLs were stiffer than benign ones and liver metastases were stiffer than primary liver carcinomas.2D-SWE with Emax was a useful complement to conventional ultrasound for the differential diagnosis of FLLs.
基金Supported by the Bangladesh Ministry of Science and Technology Fellowship Awardthe Alexander von Humboldt Foundation for a Postdoctoral Fellowship
文摘The basic properties of nonlinear ion-acoustic(IA) waves(IAWs), particularly finite amplitude IA rogue waves(IARWs) in a plasma medium(containing pair ions, iso-thermal positrons, and non-thermal electrons) are theoretically investigated by deriving the nonlinear Schr¨odinger equation(NLSE).The criteria for the modulational instability of IAWs, and the basic features of finite amplitude IARWs are identified.The modulationally stable and unstable regions are determined by the sign of the ratio of the dispersive coefficient to the nonlinear coefficient of NLSE.The latter is analyzed to obtain the region for the existence of the IARWs, which corresponds to the unstable region.The shape of the profile of the rogue waves depends on the non-thermal parameter α and the ratio of electron temperature to positron temperature.It is found that the increase in the value of the non-thermal parameter enhances both the amplitude and width of IARWs, and that the enhancement of electron(positron) temperature reduces(enhances) the amplitude and width of IARWs.It is worth to mention that our present investigation may be useful for understanding the salient features of IARWs in space(viz., upper region of Titan’s atmosphere, cometary comae, and Earth’s ionosphere, etc.)and laboratory(viz., plasma processing reactor and neutral beam sources, etc.) plasmas.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10971109 and 10971211supported by Program for New Century Excellent Talents in University under Grant No.NCET-08-0515
文摘In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically. The main differences between the two types of transformation mentioned above are listed by three items.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675084 and 11435005)the Fund from the Educational Commission of Zhejiang Province,China(Grant No.Y201737177)+1 种基金Ningbo Natural Science Foundation(Grant No.2015A610159)the K C Wong Magna Fund in Ningbo University
文摘In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.
文摘In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solution. This result shows that rogue wave can come from the extreme behavior of the breather solitary wave for (1+1)-dimensional nonlinear wave fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971475)。
文摘We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains more arbitrary autocephalous parameters.In addition,a lumpoff solution is also derived based on the general lump solutions and a stripe soliton.Furthermore,we figure out instanton/rogue wave solutions via introducing two stripe solitons.Finally,one can better illustrate these propagation phenomena of these solutions by analyzing images.
基金supported by the National Natural Science Foundation of China(Grant Nos.11371248,11431008,11271254,11428102,and 11671255)the Fund from the Ministry of Economy and Competitiveness of Spain(Grant Nos.MTM2012-37070 and MTM2016-80276-P(AEI/FEDER,EU))
文摘The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the two-component NLS equation coupled to the Boussinesq equation. We obtain the bright-bright, bright-dark, and dark-dark soliton solutions to the nonlinear system. We discuss the collision between two solitons. We observe that the collision of bright-bright soliton is inelastic and two solitons oscillating periodically can happen in the two parallel-traveling bright-bright or bright-dark soliton solution. The general breather and rogue wave solutions are also given. Our results show again that there are more abundant dynamical properties for multi-component nonlinear systems.
基金The project supported by National Natural Science Foundation of China under Grant No.10771196the Natural Science Foundation of Zhejiang Province under Grant No.Y605044
文摘Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.