In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditio...In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehen...Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field.展开更多
The immense prospects of two-dimensional(2D)materials in the field of high-performance sensing stem from their unique layered structures and superior properties.Constructing heterostructures and refining sensor archit...The immense prospects of two-dimensional(2D)materials in the field of high-performance sensing stem from their unique layered structures and superior properties.Constructing heterostructures and refining sensor architectures are at the forefront of innovative research to enhance sensor performance.This review synthesizes the current literature,discussing the photovoltaic attributes,fabrication methods,analytical techniques and integration strategies pertinent to 2D materials.This comprehensive review of the operating principles of various sensors investigates the recent progress and deployment of these materials within diverse sensing devices,including chemical sensors,biosensors and optical sensors.Conclusively,this review serves as a valuable reference for understanding the applications and progress of 2D materials in high-performance sensors and explores their potential in interdisciplinary research.展开更多
Hydrogenated two-dimensional(2D)materials have gained significant attention due to their tunable properties,which can be engineered through various functionalization techniques.This review discusses hydrogenated Xenes...Hydrogenated two-dimensional(2D)materials have gained significant attention due to their tunable properties,which can be engineered through various functionalization techniques.This review discusses hydrogenated Xenes,a new class of fully hydrogenated mono-elemental 2D materials,including graphane,germanane,silicane,and stanane.Hydrogenation enhances the properties of Xenes,making them transparent,mechanically strong,electrically conductive,and rare.These materials off er a unique combination of characteristics that make them highly desirable for a variety of advanced applications in energy storage,organic electronics,and optoelectronics.Xenes such as silicane and germanane are semiconductors with tunable bandgaps,making them ideal for use in transistors,logic circuits,and sensors.Their electronic and optical properties can be finely adjusted,allowing them to be used in high-performance devices like LEDs,solar cells,and photodetectors.Furthermore,hydrogenated Xenes show potential in applications like batteries,supercapacitors,hydrogen storage,piezoelectricity,and biosensing,owing to their high surface area and versatility.This review also explores the impact of various hydrogenation techniques,including plasma treatment,wet chemical methods,and electrochemical hydrogenation,on the electronic,mechanical,thermal,optical,and magnetic properties of these materials.Advanced characterization techniques,such as X-ray absorption spectroscopy(XANES),have provided valuable insights into the electronic structure and bonding environments of these materials.Finally,the paper highlights the challenges and limitations of hydrogenation,including structural instability and environmental concerns,while discussing the future prospects and advancements needed to harness the full potential of hydrogenated 2D materials.This review serves as a comprehensive resource for researchers aiming to explore the applications of hydrogenated Xenes in next-generation technologies.展开更多
The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor indu...The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor industry entering into sub-10 nm technology nodes,degrading device performance and increasing power consumption give rise to insurmountable roadblocks confronted by modern ICs that need to be conquered to sustain the Moore law's life.Bulk semiconductors like prevalent Si are plagued by seriously degraded carrier mobility as thickness thinning down to sub-5 nm,which is imperative to maintain sufficient gate electrostatic controllability to combat the increasingly degraded short channel effects.Nowadays,the emergence of two-dimensional(2D)materials opens up new gateway to eschew the hurdles laid in front of the scaling trend of modern IC,mainly ascribed to their ultimately atomic thickness,capability to maintain carrier mobility with thickness thinning down,dangling-bonds free surface,wide bandgaps tunability and feasibility to constitute diverse heterostructures.Blossoming breakthroughs in discrete electronic device,such as contact engineering,dielectric integration and vigorous channel-length scaling,or large circuits arrays,as boosted yields,improved variations and full-functioned processor fabrication,based on 2D materials have been achieved nowadays,facilitating 2D materials to step under the spotlight of IC industry to be treated as the most potential future successor or complementary counterpart of incumbent Si to further sustain the down-scaling of modern IC.展开更多
Understanding the dynamics of photoexcited carriers is essential for advancing photoelectronic device design.Photon absorption generates electron–hole pairs,and subsequent scatterings can induce ultrafast thermalizat...Understanding the dynamics of photoexcited carriers is essential for advancing photoelectronic device design.Photon absorption generates electron–hole pairs,and subsequent scatterings can induce ultrafast thermalization within a picosecond,forming a quasi-equilibrium distribution with overheated electrons.The high-energy tail of this distribution enables carriers to overcome energy barriers,thereby enhancing quantum efficiency—a phenomenon known as photothermionic emission(PTE).Despite its importance,the onset and mechanisms of PTE remain under debate.Using real-time timedependent density functional theory(rt-TDDFT),we investigate ultrafast carrier thermalization in two-dimensional(2D)materials graphene and PtTe2,and the results reveal distinct differences.In graphene,both electrons and holes thermalize into Fermi–Dirac distributions with good agreement to experiment,while PtTe2exhibits anomalous high-energy tails for both electrons and holes,deviating significantly from Fermi–Dirac behavior.We attribute this anomaly to differences in orbital coupling between the two materials,from which we derive design principles for identifying optimal PTE candidates and,ultimately,improving photodetector performance.展开更多
Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders th...Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.展开更多
Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk...Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.展开更多
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b...Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the...Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the interaction between doped boron and matrix materials on NRR catalytic performance is still unclear,which is limiting the development of catalysts containing boron for NRR.Here,NRR on different boron-doped twodimensional(2D)materials was explored by first principle theory.It is found that adsorption energy of intermediate*NNH(E*NNH)can be used as a descriptor to characterize the catalytic activity for NRR.Boron-adsorbed black phosphorus(B-BP)is demonstrated showing excellent NRR catalytic activity and suppressing hydrogen evolution reaction.It is disclosed that the excellent catalytic performance of boron-doped structures comes from a proper quantitatively electron transfer(0.8e)between nitrogen in*NNH and the active site boron atom.This work not only established a descriptor for NRR catalytic activity on B-doped 2D materials,but also screened out a potential NRR catalyst.More importantly,the intrinsic reason and mechanism of high catalytic activity of boron-doped structures were proposed.This work provides a design principle for exploring high-performance NRR electrocatalysts containing boron.展开更多
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ...Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.展开更多
In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the cata...In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the catalytic activity of 2D materials.However,the stability of 2D materials under catalytic conditions,as a critical issue,requires better understanding for any practical applications.This review summarizes recent progress in electrocatalytic stability of 2D materials,including four intrinsic factors that affect the stability of 2D materials:1.Weak interactions between 2D catalyst and substrate;2,delamination of 2D catalyst layers;3.metastable phase of 2D materials;4.chemistry and environmental instability of 2D materials.Meanwhile,some corresponding solutions are summarized for each factor.In addition,this review proposes potential routes for developing 2D catalytic materials with both high activity and stability.展开更多
The urgent demand of extreme(ultra-high/low)thermal conductivity materials is triggered by the high-power device,where exploring the theories and mechanisms of regulating thermal transport properties plays a key role....The urgent demand of extreme(ultra-high/low)thermal conductivity materials is triggered by the high-power device,where exploring the theories and mechanisms of regulating thermal transport properties plays a key role.Herein,we elaborately investigate the effect of vertical(out-of-plane)piezoelectric characteristics on thermal transport,which is historically undiscovered.The different stacking-order(AA and AB)bilayer boron nitride(Bi-BN)in two-dimensional(2D)materials are selected as study cases.By performing state-of-the-art first-principles calculations,it is found that the polarization charge along the out-of-plane orientation ascends significantly with the increasing piezoelectric response in AB stacked Bi-BN(Bi-BN-AB)followed by the enhanced interlayer B–N atomic interactions.Consequently,the amplitude of phonon anharmonicity in Bi-BN-AB increases larger than that in the AA stacked Bi-BN(Bi-BN-AA),resulting in the dramatic weakening of the thermal conductivity by 20.34%under 18%strain.Our research reveals the significant role of the vertical(out-of-plane)piezoelectric characteristic in regulating thermal transport and provides new insight into accurately exploring the thermal transport performance of 2D van der Waals materials.展开更多
Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropi...Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.展开更多
Single-atom site catalysts(SACs) and two-dimensional materials(2DM) have gradually become two hot topics in catalysis over the past decades. Their combination with each other can further endow the derived SACs with ex...Single-atom site catalysts(SACs) and two-dimensional materials(2DM) have gradually become two hot topics in catalysis over the past decades. Their combination with each other can further endow the derived SACs with extraordinary properties such as high loading, identical active sites, uniform coordination environment, distinctive metal-support interaction, and enhanced catalytic activities. In this review, we highlight the recent development in this specific research topic according to the types of substrates and focus on their applications in energy conversion field. Additionally, we also make a brief introduction to the synthesis and characterization methods for SACs supported on 2DM(SACs/2DM). Finally, the challenges and perspectives are summarized based on the current development status. It is believed that this work will make contributions to the rational design and fabrication of novel SACs/2DM, promoting their practical energy applications in the future.展开更多
Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D ma...Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.展开更多
Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potent...Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potential in optoelectronic applications. High-performance and multifunctional devices were achieved by employing diverse designs, such as hybrid systems with nanostructured materials, bulk semiconductors and organics, forming 2D heterostructures. In this review, we mainly discuss the recent progress of 2D materials in high-responsive photodetectors, light-emitting devices and single photon emitters. Hybrid systems and van der Waals heterostructure-based devices are emphasized, which exhibit great potential in state-of-the-art applications.展开更多
Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and tra...Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.展开更多
Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, me...Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS2 and the new strategy for thermal management of MoS2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.展开更多
基金support from the National Key Research and Development Program of China(Grant nos.2024YFA1409700 and 2023YFA1407000)the National Natural Science Foundation of China(Grant no.62374158).
文摘In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0307800)the National Natural Science Foundation of China (Grant No. 12074377)+2 种基金Fundamental Research Funds for the Central Universities,the International Partnership Program of Chinese Academy of Sciences (Grant No. 211211KYSB20210007)the China Postdoctoral Science Foundation (Grant No. 2024M753465)the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20241893)。
文摘Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field.
基金supported by the National Natural Science Foundation of China(No.62205091)the China Postdoctoral Science Foundation Funded Project(No.2022M710983)+1 种基金HeiLongJiang Postdoctoral Foundation(No.LBHZ22201)the Fundamental Research Foundation for Universities of Heilongjiang Province(No.2022-KYYWF-0121).
文摘The immense prospects of two-dimensional(2D)materials in the field of high-performance sensing stem from their unique layered structures and superior properties.Constructing heterostructures and refining sensor architectures are at the forefront of innovative research to enhance sensor performance.This review synthesizes the current literature,discussing the photovoltaic attributes,fabrication methods,analytical techniques and integration strategies pertinent to 2D materials.This comprehensive review of the operating principles of various sensors investigates the recent progress and deployment of these materials within diverse sensing devices,including chemical sensors,biosensors and optical sensors.Conclusively,this review serves as a valuable reference for understanding the applications and progress of 2D materials in high-performance sensors and explores their potential in interdisciplinary research.
基金partially supported by the financial supports from Aaivalayam-DIRAC,Indiathe Science and Technology Development Fund(Nos.007/2017/A1 and 132/2017/A3),Macao Special Administration Region(SAR),China+2 种基金National Natural Science Fund(Nos.61875138,61435010,and 6181101252)Science and Technology Innovation Commission of the Shenzhen(Nos.KQTD2015032416270,JCYJ20150625103619275,and JCYJ20170811093453105)research funding from the Ministry of Science and Higher Education of the Russian Federation(Ural Federal University project within the Priority 2030 Program)。
文摘Hydrogenated two-dimensional(2D)materials have gained significant attention due to their tunable properties,which can be engineered through various functionalization techniques.This review discusses hydrogenated Xenes,a new class of fully hydrogenated mono-elemental 2D materials,including graphane,germanane,silicane,and stanane.Hydrogenation enhances the properties of Xenes,making them transparent,mechanically strong,electrically conductive,and rare.These materials off er a unique combination of characteristics that make them highly desirable for a variety of advanced applications in energy storage,organic electronics,and optoelectronics.Xenes such as silicane and germanane are semiconductors with tunable bandgaps,making them ideal for use in transistors,logic circuits,and sensors.Their electronic and optical properties can be finely adjusted,allowing them to be used in high-performance devices like LEDs,solar cells,and photodetectors.Furthermore,hydrogenated Xenes show potential in applications like batteries,supercapacitors,hydrogen storage,piezoelectricity,and biosensing,owing to their high surface area and versatility.This review also explores the impact of various hydrogenation techniques,including plasma treatment,wet chemical methods,and electrochemical hydrogenation,on the electronic,mechanical,thermal,optical,and magnetic properties of these materials.Advanced characterization techniques,such as X-ray absorption spectroscopy(XANES),have provided valuable insights into the electronic structure and bonding environments of these materials.Finally,the paper highlights the challenges and limitations of hydrogenation,including structural instability and environmental concerns,while discussing the future prospects and advancements needed to harness the full potential of hydrogenated 2D materials.This review serves as a comprehensive resource for researchers aiming to explore the applications of hydrogenated Xenes in next-generation technologies.
基金supported by start-up capital of Ningbo Eastern Institute of technology。
文摘The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor industry entering into sub-10 nm technology nodes,degrading device performance and increasing power consumption give rise to insurmountable roadblocks confronted by modern ICs that need to be conquered to sustain the Moore law's life.Bulk semiconductors like prevalent Si are plagued by seriously degraded carrier mobility as thickness thinning down to sub-5 nm,which is imperative to maintain sufficient gate electrostatic controllability to combat the increasingly degraded short channel effects.Nowadays,the emergence of two-dimensional(2D)materials opens up new gateway to eschew the hurdles laid in front of the scaling trend of modern IC,mainly ascribed to their ultimately atomic thickness,capability to maintain carrier mobility with thickness thinning down,dangling-bonds free surface,wide bandgaps tunability and feasibility to constitute diverse heterostructures.Blossoming breakthroughs in discrete electronic device,such as contact engineering,dielectric integration and vigorous channel-length scaling,or large circuits arrays,as boosted yields,improved variations and full-functioned processor fabrication,based on 2D materials have been achieved nowadays,facilitating 2D materials to step under the spotlight of IC industry to be treated as the most potential future successor or complementary counterpart of incumbent Si to further sustain the down-scaling of modern IC.
基金Project supported by the Natural Science Foundation of Chongqing of China(Grant No.CSTB2023NSCQ-LZX0087)the National Natural Science Foundation of China(Grant Nos.62074021 and 12174380)。
文摘Understanding the dynamics of photoexcited carriers is essential for advancing photoelectronic device design.Photon absorption generates electron–hole pairs,and subsequent scatterings can induce ultrafast thermalization within a picosecond,forming a quasi-equilibrium distribution with overheated electrons.The high-energy tail of this distribution enables carriers to overcome energy barriers,thereby enhancing quantum efficiency—a phenomenon known as photothermionic emission(PTE).Despite its importance,the onset and mechanisms of PTE remain under debate.Using real-time timedependent density functional theory(rt-TDDFT),we investigate ultrafast carrier thermalization in two-dimensional(2D)materials graphene and PtTe2,and the results reveal distinct differences.In graphene,both electrons and holes thermalize into Fermi–Dirac distributions with good agreement to experiment,while PtTe2exhibits anomalous high-energy tails for both electrons and holes,deviating significantly from Fermi–Dirac behavior.We attribute this anomaly to differences in orbital coupling between the two materials,from which we derive design principles for identifying optimal PTE candidates and,ultimately,improving photodetector performance.
基金the financial support of the National Natural Science Foundation of China(Nos.U21A20171,12074245,and 52102281)National Key R&D Program of China(Nos.2021YFB3800068 and 2020YFB1506400)+1 种基金Shanghai Sailing Program(No.21YF1421600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2021QNRC001).
文摘Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.
基金supported by the National Natural Science Foundation of China(62205183)the Research Grants Council of Hong Kong(ANR/RGC,Ref.No.A-CUHK404/21).
文摘Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61974075 and 61704121)+2 种基金the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).
文摘Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.
基金fiancially supported by the National Natural Science Foundation of China(No.52073020)the Fundamental Research Funds for the Central Universities(No.buctrc202008)。
文摘Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the interaction between doped boron and matrix materials on NRR catalytic performance is still unclear,which is limiting the development of catalysts containing boron for NRR.Here,NRR on different boron-doped twodimensional(2D)materials was explored by first principle theory.It is found that adsorption energy of intermediate*NNH(E*NNH)can be used as a descriptor to characterize the catalytic activity for NRR.Boron-adsorbed black phosphorus(B-BP)is demonstrated showing excellent NRR catalytic activity and suppressing hydrogen evolution reaction.It is disclosed that the excellent catalytic performance of boron-doped structures comes from a proper quantitatively electron transfer(0.8e)between nitrogen in*NNH and the active site boron atom.This work not only established a descriptor for NRR catalytic activity on B-doped 2D materials,but also screened out a potential NRR catalyst.More importantly,the intrinsic reason and mechanism of high catalytic activity of boron-doped structures were proposed.This work provides a design principle for exploring high-performance NRR electrocatalysts containing boron.
文摘Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.
基金support from the National Key R&D Program of China,China (Nos.2022YFA1505200)the National Natural Science Foundation of China,China (Nos.21872114,92163103,and 21972121)the Fundamental Research Funds for the Central Universities,China (Nos.20720210017 and 20720210009)。
文摘In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the catalytic activity of 2D materials.However,the stability of 2D materials under catalytic conditions,as a critical issue,requires better understanding for any practical applications.This review summarizes recent progress in electrocatalytic stability of 2D materials,including four intrinsic factors that affect the stability of 2D materials:1.Weak interactions between 2D catalyst and substrate;2,delamination of 2D catalyst layers;3.metastable phase of 2D materials;4.chemistry and environmental instability of 2D materials.Meanwhile,some corresponding solutions are summarized for each factor.In addition,this review proposes potential routes for developing 2D catalytic materials with both high activity and stability.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.52006057,51906097 and 11904324)the Fundamental Research Funds for the Central Universities(Nos.531119200237 and 541109010001)the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body at Hunan University(No.52175013).
文摘The urgent demand of extreme(ultra-high/low)thermal conductivity materials is triggered by the high-power device,where exploring the theories and mechanisms of regulating thermal transport properties plays a key role.Herein,we elaborately investigate the effect of vertical(out-of-plane)piezoelectric characteristics on thermal transport,which is historically undiscovered.The different stacking-order(AA and AB)bilayer boron nitride(Bi-BN)in two-dimensional(2D)materials are selected as study cases.By performing state-of-the-art first-principles calculations,it is found that the polarization charge along the out-of-plane orientation ascends significantly with the increasing piezoelectric response in AB stacked Bi-BN(Bi-BN-AB)followed by the enhanced interlayer B–N atomic interactions.Consequently,the amplitude of phonon anharmonicity in Bi-BN-AB increases larger than that in the AA stacked Bi-BN(Bi-BN-AA),resulting in the dramatic weakening of the thermal conductivity by 20.34%under 18%strain.Our research reveals the significant role of the vertical(out-of-plane)piezoelectric characteristic in regulating thermal transport and provides new insight into accurately exploring the thermal transport performance of 2D van der Waals materials.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301204)the National Natural Science Foundation of China(Grant Nos.11604326,11434010,11474277,and 11225421)
文摘Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.
基金supported by Science and Technology Key Project of Guangdong Province of China (No. 2020B010188002)the National Key R&D Program of China (2018YFA0702003)the National Natural Science Foundation of China (Nos. 21890383, 21871159)。
文摘Single-atom site catalysts(SACs) and two-dimensional materials(2DM) have gradually become two hot topics in catalysis over the past decades. Their combination with each other can further endow the derived SACs with extraordinary properties such as high loading, identical active sites, uniform coordination environment, distinctive metal-support interaction, and enhanced catalytic activities. In this review, we highlight the recent development in this specific research topic according to the types of substrates and focus on their applications in energy conversion field. Additionally, we also make a brief introduction to the synthesis and characterization methods for SACs supported on 2DM(SACs/2DM). Finally, the challenges and perspectives are summarized based on the current development status. It is believed that this work will make contributions to the rational design and fabrication of novel SACs/2DM, promoting their practical energy applications in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61307058,61378036,11304101,and 11474108)Guangdong Natural Science Funds for Distinguished Young Scholar,China(Grant No.2014A030306019)+6 种基金Pearl River S&T Nova Program of Guangzhou,China(Grant No.2014J2200008)Program for Outstanding Innovative Young Talents of Guangdong Province,China(Grant No.2014TQ01X220)Program for Outstanding Young Teachers in Guangdong Higher Education Institutes,China(Grant No.YQ2015051)Science and Technology Project of Guangdong,China(Grant No.2016B090925004)Foundation for Young Talents in Higher Education of Guangdong,China(Grant No.2017KQNCX051)Science and Technology Program of Guangzhou,China(Grant No.201607010245)Scientific Research Foundation of Young Teacher of South China Normal University,China(Grant No.17KJ09)
文摘Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61422503 and 61376104)the Open Research Funds of Key Laboratory of MEMS of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities of China
文摘Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potential in optoelectronic applications. High-performance and multifunctional devices were achieved by employing diverse designs, such as hybrid systems with nanostructured materials, bulk semiconductors and organics, forming 2D heterostructures. In this review, we mainly discuss the recent progress of 2D materials in high-responsive photodetectors, light-emitting devices and single photon emitters. Hybrid systems and van der Waals heterostructure-based devices are emphasized, which exhibit great potential in state-of-the-art applications.
基金Project supported by the Major State Basic Research Development Program of China(Grant Nos.2013CB922302 and 2016YFA0203900)the Natural Science Foundation of China(Grant Nos.11322441,614404147,61574152,and 61674157)the Key Research Project of Frontier Science of Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-JSC016 and QYZDB-SSW-JSC031)
文摘Two-dimensional (2D) materials, such as graphene and MoS2 related transition metal dichalcogenides (TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials, possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor (FET) structures with ferroelectric gate dielectric construction (termed FeFET). One type of device is for logic applications, such as a graphene and TMDC FeFET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material FeFET.
基金Project supported by the Science and Engineering Research Council,Singapore(Grant No.152-70-00017)the Agency for Science,Technology and Research(A*STAR)Singapore
文摘Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS2 and the new strategy for thermal management of MoS2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.