期刊文献+
共找到8,397篇文章
< 1 2 250 >
每页显示 20 50 100
Hierarchical MPS-Based Three-Dimensional Geological Structure Reconstruction with Two-Dimensional Image(s) 被引量:3
1
作者 Weisheng Hou Hengguang Liu +2 位作者 Tiancheng Zheng Wenjie Shen Fan Xiao 《Journal of Earth Science》 SCIE CAS CSCD 2021年第2期455-467,共13页
Multiple-point statistics(MPS)is a useful approach to reconstruct three-dimensional models in the macroscopic or microscopic field.Extracting spatial features for three-dimensional reconstruction from two-dimensional ... Multiple-point statistics(MPS)is a useful approach to reconstruct three-dimensional models in the macroscopic or microscopic field.Extracting spatial features for three-dimensional reconstruction from two-dimensional training images(TIs),and characterizing non-stationary features with directional ductility are two key issues in MPS simulation.This study presents a step-wise MPS-based three-dimensional structures reconstruction algorithm with the sequential process and hierarchical strategy based on two-dimensional images.An extension method is proposed to construct three-dimensional TIs.With a sequential simulation process,an initial guess at the coarsest scale is simulated,in which hierarchical strategy is used according to the characteristics of TIs.To obtain a more refined realization,an expectation-maximization like iterative process with global optimization is implemented.A concrete example of chondrite micro-structure simulation,in which one scanning electron microscopy(SEM)image of the Heyetang meteorite is used as TI,shows that the presented algorithm can simulate complex non-stationary structures. 展开更多
关键词 multiple-point statistics hierarchical strategy CHONDRITE two-dimensional image(s)
原文传递
Survey of methods and principles in three-dimensional reconstruction from two-dimensional medical images 被引量:2
2
作者 Mriganka Sarmah Arambam Neelima Heisnam Rohen Singh 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期199-217,共19页
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p... Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted. 展开更多
关键词 Three-dimensional reconstruction Human organ Medical images
在线阅读 下载PDF
Image Super-Resolution Reconstruction Model Based on SRGAN
3
作者 LU Xin-ya CHEN Jia-yi +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期21-28,共8页
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual... Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects. 展开更多
关键词 image super-resolution reconstruction Generative Adversarial Networks CSAB PatchGAN architecture
在线阅读 下载PDF
Frequency-Quantized Variational Autoencoder Based on 2D-FFT for Enhanced Image Reconstruction and Generation
4
作者 Jianxin Feng Xiaoyao Liu 《Computers, Materials & Continua》 2025年第5期2087-2107,共21页
As a form of discrete representation learning,Vector Quantized Variational Autoencoders(VQ-VAE)have increasingly been applied to generative and multimodal tasks due to their ease of embedding and representative capaci... As a form of discrete representation learning,Vector Quantized Variational Autoencoders(VQ-VAE)have increasingly been applied to generative and multimodal tasks due to their ease of embedding and representative capacity.However,existing VQ-VAEs often perform quantization in the spatial domain,ignoring global structural information and potentially suffering from codebook collapse and information coupling issues.This paper proposes a frequency quantized variational autoencoder(FQ-VAE)to address these issues.The proposed method transforms image features into linear combinations in the frequency domain using a 2D fast Fourier transform(2D-FFT)and performs adaptive quantization on these frequency components to preserve image’s global relationships.The codebook is dynamically optimized to avoid collapse and information coupling issue by considering the usage frequency and dependency of code vectors.Furthermore,we introduce a post-processing module based on graph convolutional networks to further improve reconstruction quality.Experimental results on four public datasets demonstrate that the proposed method outperforms state-of-the-art approaches in terms of Structural Similarity Index(SSIM),Learned Perceptual Image Patch Similarity(LPIPS),and Reconstruction Fréchet Inception Distance(rFID).In the experiments on the CIFAR-10 dataset,compared to the baselinemethod VQ-VAE,the proposedmethod improves the abovemetrics by 4.9%,36.4%,and 52.8%,respectively. 展开更多
关键词 VAE 2D-FFT image reconstruction image generation
在线阅读 下载PDF
Hyperspectral Image Reconstruction for Interferometric Spectral Imaging System with Degradation Synthesis
5
作者 Yuansheng Li Xiangpeng Feng +2 位作者 Siyuan Li Geng Zhang Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期42-56,共15页
Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferome... Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferometric imaging faces the impact of multi-stage degradation. Most exsiting interferometric spectrum reconstruction methods are based on tradition model-based framework with multiple steps, showing poor efficiency and restricted performance. Thus, we propose an interferometric spectrum reconstruction method based on degradation synthesis and deep learning.Firstly, based on imaging mechanism, we proposed an mathematical model of interferometric imaging to analyse the degradation components as noises and trends during imaging. The model consists of three stages, namely instrument degradation, sensing degradation, and signal-independent degradation process. Then, we designed calibration-based method to estimate parameters in the model, of which the results are used for synthesizing realistic dataset for learning-based algorithms.In addition, we proposed a dual-stage interferogram spectrum reconstruction framework, which supports pre-training and integration of denoising DNNs. Experiments exhibits the reliability of our degradation model and synthesized data, and the effectiveness of the proposed reconstruction method. 展开更多
关键词 hyperspectral imaging degradation modeling data synthesis spectral reconstruction
在线阅读 下载PDF
Neural-field-based image reconstruction for bioluminescence tomography
6
作者 Xuanxuan Zhang Xu Cao +2 位作者 Jiulou Zhang Lin Zhang Guanglei Zhang 《Journal of Innovative Optical Health Sciences》 2025年第1期165-179,共15页
Deep learning(DL)-based image reconstruction methods have garnered increasing interest in the last few years.Numerous studies demonstrate that DL-based reconstruction methods function admirably in optical tomographic ... Deep learning(DL)-based image reconstruction methods have garnered increasing interest in the last few years.Numerous studies demonstrate that DL-based reconstruction methods function admirably in optical tomographic imaging techniques,such as bioluminescence tomography(BLT).Nevertheless,nearly every existing DL-based method utilizes an explicit neural representation for the reconstruction problem,which either consumes much memory space or requires various complicated computations.In this paper,we present a neural field(NF)-based image reconstruction scheme for BLT that uses an implicit neural representation.The proposed NFbased method establishes a transformation between the coordinate of an arbitrary spatial point and the source value of the point with a relatively light-weight multilayer perceptron,which has remarkable computational efficiency.Another simple neural network composed of two fully connected layers and a 1D convolutional layer is used to generate the neural features.Results of simulations and experiments show that the proposed NF-based method has similar performance to the photon density complement network and the two-stage network,while consuming fewer floating point operations with fewer model parameters. 展开更多
关键词 Bioluminescence tomography image reconstruction neural field
原文传递
Image compressed sensing reconstruction network based on self-attention mechanism
7
作者 LIU Yuhong LIU Xiaoyan CHEN Manyin 《Journal of Measurement Science and Instrumentation》 2025年第4期537-546,共10页
For image compression sensing reconstruction,most algorithms use the method of reconstructing image blocks one by one and stacking many convolutional layers,which usually have defects of obvious block effects,high com... For image compression sensing reconstruction,most algorithms use the method of reconstructing image blocks one by one and stacking many convolutional layers,which usually have defects of obvious block effects,high computational complexity,and long reconstruction time.An image compressed sensing reconstruction network based on self-attention mechanism(SAMNet)was proposed.For the compressed sampling,self-attention convolution was designed,which was conducive to capturing richer features,so that the compressed sensing measurement value retained more image structure information.For the reconstruction,a self-attention mechanism was introduced in the convolutional neural network.A reconstruction network including residual blocks,bottleneck transformer(BoTNet),and dense blocks was proposed,which strengthened the transfer of image features and reduced the amount of parameters dramatically.Under the Set5 dataset,when the measurement rates are 0.01,0.04,0.10,and 0.25,the average peak signal-to-noise ratio(PSNR)of SAMNet is improved by 1.27,1.23,0.50,and 0.15 dB,respectively,compared to the CSNet+.The running time of reconstructing a 256×256 image is reduced by 0.1473,0.1789,0.2310,and 0.2524 s compared to ReconNet.Experimental results showed that SAMNet improved the quality of reconstructed images and reduced the reconstruction time. 展开更多
关键词 convolutional neural network compressed sensing self-attention mechanism dense block image reconstruction
在线阅读 下载PDF
Reducing Both Radiation Dose and Iodine Intake in 80 kVp Head and Neck CT Angiography Using Deep Learning Image Reconstruction Combined with Contrast-Enhancement-boost Technology:A Comparison with 100 kVp Imaging Using Hybrid Iterative Reconstruction
8
作者 WANG Yun ZHANG Xinyue +5 位作者 TONG Jiajing CHEN Yu XU Min WANG Jian ZHANG Zhuhua JIN Zhengyu 《CT理论与应用研究(中英文)》 2025年第6期1082-1091,共10页
Purpose:To assess the clinical efficacy of integrating deep learning reconstruction(DLR)with contrast-enhancement-boost(CE-boost)in 80 kVp head and neck CT angiography(CTA)using substantially lowered radiation and con... Purpose:To assess the clinical efficacy of integrating deep learning reconstruction(DLR)with contrast-enhancement-boost(CE-boost)in 80 kVp head and neck CT angiography(CTA)using substantially lowered radiation and contrast medium(CM)doses,compared to the standard 100 kVp protocol using hybrid iterative reconstruction(HIR).Methods:Sixty-six patients were prospectively enrolled and randomly assigned to one of two groups:the low-dose group(n=33),receiving 80 kVp and 28 mL contrast medium(CM)with a noise index(NI)of 15;and the regular-dose group(n=33),receiving 100 kVp and 40 mL CM with an NI of 10.For the lowdose group,images underwent reconstruction using both hybrid iterative reconstruction(HIR)and deep learning reconstruction(DLR)at mild-,standard-,and strong-strength levels,both before and after combination with contrast enhancement-boost(CE-boost).This generated eight distinct datasets:L-HIR,L-DLR_(mild),L-DLR_(standard),L-DLR_(strong),L-HIR-CE,L-DLR_(mild)-CE,L-DLR_(standard)-CE,and L-DLR_(strong)-CE.Images for the regular-dose group were reconstructed solely with HIR(R-HIR).Quantitative analysis involved calculating and comparing CT attenuation,image noise,signal-to-noise ratio(SNR),and contrast-to-noise ratio(CNR)within six key vessels:the aortic arch(AA),internal carotid artery(ICA),external carotid artery(ECA),vertebral arteries(VA),basilar artery(BA),and middle cerebral artery(MCA).Two radiologists independently assessed subjective image quality using a 5-point scale,with statistical significance defined as P<0.05.Results:Compared to the regular-dose group,the low-dose protocol achieved a substantial reduction in contrast media volume(28 mL versus 40 mL,a 30%decrease)and radiation exposure((0.41±0.08)mSv versus(1.18±0.12)mSv,a 65%reduction).Both L-DLR_(standard) and L-DLR_(strong) delivered comparable or superior SNR and CNR across all vascular segments relative to R-HIR.However,subjective image quality scores for L-DLR at all strength levels fell below those for R-HIR(all P<0.05 for both readers).Combining CE-boost with the low-dose protocol significantly enhanced the objective image performance of L-DLR_(strong)-CE(all P<0.05)and produced subjective image scores comparable to R-HIR(reader 1:P=0.15;reader 2:P=0.06).Conclusion:When compared to the standard 100 kVp head and neck CTA,the combination of the DLR and CE-boost techniques at 80 kVp can achieve a 30%reduction in contrast dose and a 65%reduction in radiation dose,while maintaining both objective and subjective image quality. 展开更多
关键词 computed tomography angiography radiation dosage deep learning reconstruction image quality
原文传递
Hyperspectral imagery quality assessment and band reconstruction using the prophet model
9
作者 Ping Ma Jinchang Ren +2 位作者 Zhi Gao Yinhe Li Rongjun Chen 《CAAI Transactions on Intelligence Technology》 2025年第1期47-61,共15页
In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study pr... In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study presents an innovative framework for assessing HSI band quality and reconstructing the low-quality bands,based on the Prophet model.By introducing a comprehensive quality metric to start,the authors approach factors in both spatial and spectral characteristics across local and global scales.This metric effectively captures the intricate noise and distortions inherent in the HSI data.Subsequently,the authors employ the Prophet model to forecast information within the low-quality bands,leveraging insights from neighbouring high-quality bands.To validate the effectiveness of the authors’proposed model,extensive experiments on three publicly available uncorrected datasets are conducted.In a head-to-head comparison,the framework against six state-ofthe-art band reconstruction algorithms including three spectral methods,two spatialspectral methods and one deep learning method is benchmarked.The authors’experiments also delve into strategies for band selection based on quality metrics and the quality evaluation of the reconstructed bands.In addition,the authors assess the classification accuracy utilising these reconstructed bands.In various experiments,the results consistently affirm the efficacy of the authors’method in HSI quality assessment and band reconstruction.Notably,the authors’approach obviates the need for manually prefiltering of noisy bands.This comprehensive framework holds promise in addressing HSI data quality concerns whilst enhancing the overall utility of HSI. 展开更多
关键词 band reconstruction band quality hyperspectral image(HSI) prophet model
在线阅读 下载PDF
MFR-YOLOv10:Object detection in UAV-taken images based on multilayer feature reconstruction network
10
作者 Mengchu TIAN Meiji CUI +2 位作者 Zhimin CHEN Yingliang MA Shaohua YU 《Chinese Journal of Aeronautics》 2025年第11期346-364,共19页
When detecting objects in Unmanned Aerial Vehicle(UAV)taken images,large number of objects and high proportion of small objects bring huge challenges for detection algorithms based on the You Only Look Once(YOLO)frame... When detecting objects in Unmanned Aerial Vehicle(UAV)taken images,large number of objects and high proportion of small objects bring huge challenges for detection algorithms based on the You Only Look Once(YOLO)framework,rendering them challenging to deal with tasks that demand high precision.To address these problems,this paper proposes a high-precision object detection algorithm based on YOLOv10s.Firstly,a Multi-branch Enhancement Coordinate Attention(MECA)module is proposed to enhance feature extraction capability.Secondly,a Multilayer Feature Reconstruction(MFR)mechanism is designed to fully exploit multilayer features,which can enrich object information as well as remove redundant information.Finally,an MFR Path Aggregation Network(MFR-Neck)is constructed,which integrates multi-scale features to improve the network's ability to perceive objects of var-ying sizes.The experimental results demonstrate that the proposed algorithm increases the average detection accuracy by 14.15%on the Vis Drone dataset compared to YOLOv10s,effectively enhancing object detection precision in UAV-taken images. 展开更多
关键词 Object detection YOLOv10 Multi-branch enhancement coordinate attention Multilayer feature reconstruction mechanism UAV-taken images
原文传递
3D Model Reconstruction of Aluminum Foam Cross-Sectional Sequence Images Based on Milling
11
作者 Xu Feng Zhiguo Dong +1 位作者 Bo Li Hui Peng 《Journal of Beijing Institute of Technology》 2025年第5期458-481,共24页
This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are ob... This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications. 展开更多
关键词 aluminum foam section milling cross-sectional sequence images U-Net neural network 3D model reconstruction compression simulation
在线阅读 下载PDF
Accelerating SAGE algorithm in PET image reconstruction by rescaled block-iterative method 被引量:1
12
作者 朱宏擎 舒华忠 +1 位作者 周健 罗立民 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期207-210,共4页
A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo... A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality. 展开更多
关键词 positron emission tomography space-alternating generalizedexpectation-maximization image reconstruction rescaled block-iterative maximum likelihood
暂未订购
Training image analysis for three-dimensional reconstruction of porous media
13
作者 滕奇志 杨丹 +2 位作者 徐智 李征骥 何小海 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期415-421,共7页
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop... In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics. 展开更多
关键词 three-dimensional reconstruction training image stationarity porous media multiple-point statistics
在线阅读 下载PDF
Investigation of prior image constrained compressed sensing-based spectral X-ray CT image reconstruction
14
作者 周正东 余子丽 +1 位作者 张雯雯 管绍林 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期420-425,共6页
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres... To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively. 展开更多
关键词 spectral X-ray CT prior image compressed sensing optimization algorithm image reconstruction
在线阅读 下载PDF
Multiparametric magnetic resonance imaging of deep learning-based super-resolution reconstruction for predicting histopathologic grade in hepatocellular carcinoma
15
作者 Zi-Zheng Wang Shao-Ming Song +3 位作者 Gong Zhang Rui-Qiu Chen Zhuo-Chao Zhang Rong Liu 《World Journal of Gastroenterology》 2025年第34期68-80,共13页
BACKGROUND Deep learning-based super-resolution(SR)reconstruction can obtain high-quality images with more detailed information.AIM To compare multiparametric normal-resolution(NR)and SR magnetic resonance imaging(MRI... BACKGROUND Deep learning-based super-resolution(SR)reconstruction can obtain high-quality images with more detailed information.AIM To compare multiparametric normal-resolution(NR)and SR magnetic resonance imaging(MRI)in predicting the histopathologic grade in hepatocellular carcinoma.METHODS We retrospectively analyzed a total of 826 patients from two medical centers(training 459;validation 196;test 171).T2-weighted imaging,diffusion-weighted imaging,and portal venous phases were collected.Tumor segmentations were conducted automatically by 3D U-Net.Based on generative adversarial network,we utilized 3D SR reconstruction to produce SR MRI.Radiomics models were developed and validated by XGBoost and Catboost.The predictive efficiency was demonstrated by calibration curves,decision curve analysis,area under the curve(AUC)and net reclassification index(NRI).RESULTS We extracted 3045 radiomic features from both NR and SR MRI,retaining 29 and 28 features,respectively.For XGBoost models,SR MRI yielded higher AUC value than NR MRI in the validation and test cohorts(0.83 vs 0.79;0.80 vs 0.78),respectively.Consistent trends were seen in CatBoost models:SR MRI achieved AUCs of 0.89 and 0.80 compared to NR MRI’s 0.81 and 0.76.NRI indicated that the SR MRI models could improve the prediction accuracy by-1.6%to 20.9%compared to the NR MRI models.CONCLUSION Deep learning-based SR MRI could improve the predictive performance of histopathologic grade in HCC.It may be a powerful tool for better stratification management for patients with operable HCC. 展开更多
关键词 Super-resolution reconstruction Magnetic resonance imaging Hepatocellular carcinoma Histopathologic grade Radiomics
暂未订购
Magnetic Resonance Imaging Reconstruction Based on Butterfly Dilated Geometric Distillation
16
作者 DUO Lin XU Boyu +1 位作者 REN Yong YANG Xin 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期590-599,共10页
In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and de... In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and deep learning-based CS-MRI methods.In theory,enhancing geometric texture details in linear reconstruction is possible.First,the optimization problem is decomposed into two problems:linear approximation and geometric compensation.Aimed at the problem of image linear approximation,the data consistency module is used to deal with it.Since the processing process will lose texture details,a neural network layer that explicitly combines image and frequency feature representation is proposed,which is named butterfly dilated geometric distillation network.The network introduces the idea of butterfly operation,skillfully integrates the features of image domain and frequency domain,and avoids the loss of texture details when extracting features in a single domain.Finally,a channel feature fusion module is designed by combining channel attention mechanism and dilated convolution.The attention of the channel makes the final output feature map focus on the more important part,thus improving the feature representation ability.The dilated convolution enlarges the receptive field,thereby obtaining more dense image feature data.The experimental results show that the peak signal-to-noise ratio of the network is 5.43 dB,5.24 dB and 3.89 dB higher than that of ISTA-Net+,FISTA and DGDN networks on the brain data set with a Cartesian sampling mask CS ratio of 10%. 展开更多
关键词 butterfly geometric distillation dilation convolution channel attention image reconstruction
原文传递
Review of imaging buffers used in stochastic optical reconstruction microscopy
17
作者 Can Wang Zhe Sun Donghan Ma 《Chinese Chemical Letters》 2025年第9期56-63,共8页
Stochastic optical reconstruction microscopy(STORM),as a typical technique of single-molecule localization microscopy(SMLM),has overcome the diffraction limit by randomly switching fluorophores between fluorescent and... Stochastic optical reconstruction microscopy(STORM),as a typical technique of single-molecule localization microscopy(SMLM),has overcome the diffraction limit by randomly switching fluorophores between fluorescent and dark states,allowing for the precise localization of isolated emission patterns and the super-resolution reconstruction from millions of localized positions of single fluorophores.A critical factor influencing localization precision is the photo-switching behavior of fluorophores,which is affected by the imaging buffer.The imaging buffer typically comprises oxygen scavengers,photo-switching reagents,and refractive index regulators.Oxygen scavengers help prevent photobleaching,photo-switching reagents assist in facilitating the conversion of fluorophores,and refractive index regulators are used to adjust the refractive index of the solution.The synergistic interaction of these components promotes stable blinking of fluorophores,reduces irreversible photobleaching,and thereby ensures high-quality super-resolution imaging.This review provides a comprehensive overview of the essential compositions and functionalities of imaging buffers used in STORM,serving as a valuable resource for researchers seeking to select appropriate imaging buffers for their experiments. 展开更多
关键词 Single-molecule localization microscopy Stochastic optical reconstruction microscopy Photo-switching Photobleaching imaging buffer
原文传递
Single-neutron super-resolution imaging based on neutron capture event detection and reconstruction
18
作者 Yu-Hua Ma Bin Tang +10 位作者 Wei Yin Hang Li Hong-Wen Huang Hong-Li Chen Xin Yang He-Yong Huo Yong Sun Sheng Wang Bin Liu Run-Dong Li Yang Wu 《Nuclear Science and Techniques》 2025年第7期24-33,共10页
Neutron capture event imaging is a novel technique that has the potential to substantially enhance the resolution of existing imaging systems.This study provides a measurement method for neutron capture event distribu... Neutron capture event imaging is a novel technique that has the potential to substantially enhance the resolution of existing imaging systems.This study provides a measurement method for neutron capture event distribution along with multiple reconstruction methods for super-resolution imaging.The proposed technology reduces the point-spread function of an imag-ing system through single-neutron detection and event reconstruction,thereby significantly improving imaging resolution.A single-neutron detection experiment was conducted using a highly practical and efficient^(6)LiF-ZnS scintillation screen of a cold neutron imaging device in the research reactor.In milliseconds of exposure time,a large number of weak light clusters and their distribution in the scintillation screen were recorded frame by frame,to complete single-neutron detection.Several reconstruction algorithms were proposed for the calculations.The location of neutron capture was calculated using several processing methods such as noise removal,filtering,spot segmentation,contour analysis,and local positioning.The proposed algorithm achieved a higher imaging resolution and faster reconstruction speed,and single-neutron super-resolution imaging was realized by combining single-neutron detection experiments and reconstruction calculations.The results show that the resolution of the 100μm thick^(6)LiF-ZnS scintillation screen can be improved from 125 to 40 microns.This indicates that the proposed single-neutron detection and calculation method is effective and can significantly improve imaging resolution. 展开更多
关键词 Neutron capture reaction Super-resolution imaging Weak light detection Event reconstruction
在线阅读 下载PDF
Image reconstruction based on total-variation minimization and alternating direction method in linear scan computed tomography 被引量:6
19
作者 张瀚铭 王林元 +3 位作者 闫镔 李磊 席晓琦 陆利忠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期582-589,共8页
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac... Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem. 展开更多
关键词 linear scan CT image reconstruction total variation alternating direction method
原文传递
Simultaneous transverse and spanwise OH*-chemiluminescence imaging of lean blowoff events in two-dimensional bluff-body stabilized premixed flames
20
作者 Xiaoyang WANG Chen FU +7 位作者 Kunpeng LIU Meng WANG Jie LI Juan YU Yingwen YAN Jinghua LI Xiaonan GE Yi GAO 《Chinese Journal of Aeronautics》 2025年第5期109-120,共12页
This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The dat... This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The data of LBO limits were analyzed and fittedaccording to the Damk?hler(Da)and Reynolds(Re)numbers,and the fitting accuracy of LBO datawas highly improved by a modified characteristic length simultaneously considering the length andwidth of the bluff body,which is usually neglected in the previous studies.Moreover,to our knowl-edge,this is the first time that simultaneous transverse and spanwise OH*-Chemiluminescence(CL)imaging has been performed to examine the three-dimensional behavior of the LBO process.The flame stability is heavily affected by the mass and energy transport between reactants andproducts in both directions,potentially leading to the flame pinch-off.The intensity and positionof the upstream flame after pinch-off are decisive to the occurrence of the following LBO.Whenthe upstream flame after pinch-off is weak and close to the bluff body,it cannot re-ignite thedownstream unburnt gas.Subsequently,a permanent downstream extinction occurs,and theLBO takes place.The results help understand the LBO mechanism of 2D bluff-body stabilizedflames. 展开更多
关键词 Lean blowoff two-dimensional bluff-body stabilized flame OH*-chemiluminescence Simultaneous transverse and spanwise imaging Combustion
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部