The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using in...The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
MoS2, MoSe2 and WSe2 thin flakes were fabricated by the standard micromechanical cleavage procedures. The thickness and the optical contrast of the atomic thin dichalcogenide flakes on SiO2/Si substrates were measured...MoS2, MoSe2 and WSe2 thin flakes were fabricated by the standard micromechanical cleavage procedures. The thickness and the optical contrast of the atomic thin dichalcogenide flakes on SiO2/Si substrates were measured by atomic force microscopy(AFM) and spectroscopic ellipsometer. A rapid and nondestructive method by using reflection spectra was proposed to identify the layer number of 2D layered transition metal dichalcogenides on SiO2(275 nm)/Si substrates. The contrast spectra of 2D nanosheets with different layer numbers are in agreement with theoretical calculations based on Fresnel's law, indicating that this method provides an unambiguous and nondestructive contrast spectra fingerprint for identifying single-and few-layered transition metal dichalcogenides. The results will greatly help in fundamental research and application.展开更多
The solid-phase extraction using Pd-Al2O3 as the stationary phase was employed to pre-separate the sulfur compounds in straight-run diesel. The isolating effect was evaluated quantitatively by gas chromatography with ...The solid-phase extraction using Pd-Al2O3 as the stationary phase was employed to pre-separate the sulfur compounds in straight-run diesel. The isolating effect was evaluated quantitatively by gas chromatography with a sulfur chemiluminescence detector to harvest a satisfactory result. The identification of the structure of sulfur compounds by comprehensive two-dimensional gas chromatography coupled with the time-of-flight mass spectrometry indicated that cyclo-sulfides, benzothiophenes, dibenzothiophenes, dihydro-benzothiophenes and tetrahydro-dibenzothiophenes were included in straightrun diesel obtained from the Arab medium crude(AM). A total of 259 individual compounds were detected and their molecular structures were identified. The analytical method was approved as an effective way to characterize the composition of sulfur compounds, which reduced the interference of other compounds, facilitated the data presentation and provided more detailed information about molecular composition of sulfur compounds.展开更多
Objective: To establish and optimize the two-demensional electrophoresis maps of uterine leiomyoma and to study the difference of global protein patterns between uterine leiomyoma and normal myometrium. Methods: Usi...Objective: To establish and optimize the two-demensional electrophoresis maps of uterine leiomyoma and to study the difference of global protein patterns between uterine leiomyoma and normal myometrium. Methods: Using Two-dimensional electrophoresis followed by computer-assisted image analysis, the differential proteins between uterine leiomyoma and normal myometrium were compared. Results: The well-resolved and reproducible two-dimensional gel electrophoresis patterns of uterine leiomyoma and normal myometrium were established. Totally 1085±108 and 1103±151 protein spots were obtained by using the pH 4-7 IPG strips in uterine leiomyoma and normal myometrium map, respectively, of which 7 spots increased and 15 spots decreased in quantity in uterine leiomyoma compared with normal myometrium. Conclusion: The differentially expressed proteins are useful for studying the mechanism of the cause of uterine leiomyoma.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and...As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.展开更多
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ...Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.展开更多
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ...In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in...It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in logging curves,this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification,working with the Shahejie For-mation,Bohai Bay Basin,China.The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features.The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition(mineral composition+total organic carbon)of shale,while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type.The research results show that the grayscale phase model can identify shale lithofacies well,and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition,as well as corresponding re-lationships between relative amplitudes and laminae development in shales.Four lithofacies are iden-tified in the target layer of the study area:massive mixed shale,laminated mixed shale,massive calcareous shale and laminated calcareous shale.This method can not only effectively characterize the material composition of shale,but also numerically characterize the development degree of shale laminae,and solve the problem that difficult to identify millimeter-scale laminae based on logging curves,which can provide technical support for shale lithofacies identification,sweet spot evaluation and prediction of complex continental lacustrine basins.展开更多
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b...Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.展开更多
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor...The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.展开更多
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve...To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.展开更多
In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has...In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.展开更多
Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoo...Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoofing problems.However,the effects of circuit changes over time often lead to a decline in identification accuracy within open-time set.This paper proposes an ADS-B transmitter identification method to solve the degradation of identification accuracy.First,a real-time data processing system is established to receive and store ADS-B signals to meet the conditions for open-time set.The system possesses the following functionalities:data collection,data parsing,feature extraction,and identity recognition.Subsequently,a two-dimensional TimeFrequency Feature Diagram(TFFD)is proposed as a signal pre-processing method.The TFFD is constructed from the received ADS-B signal and the reconstructed signal for input to the recognition model.Finally,incorporating a frequency offset layer into the Swin Transformer architecture,a novel recognition network framework is proposed.This integration can enhance the network recognition accuracy and robustness by tailoring to the specific characteristics of ADSB signals.Experimental results indicate that the proposed recognition architecture achieves recognition accuracy of 95.86%in closed-time set and 84.33%in open-time set,surpassing other algorithms.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m...This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.展开更多
基金funded by Vice Chancellor of Research at Shiraz University(grant 3GFU2M1820).
文摘The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
基金financially supported by the National Natural Science Foundation of China(Nos.11304381 and 11174366)
文摘MoS2, MoSe2 and WSe2 thin flakes were fabricated by the standard micromechanical cleavage procedures. The thickness and the optical contrast of the atomic thin dichalcogenide flakes on SiO2/Si substrates were measured by atomic force microscopy(AFM) and spectroscopic ellipsometer. A rapid and nondestructive method by using reflection spectra was proposed to identify the layer number of 2D layered transition metal dichalcogenides on SiO2(275 nm)/Si substrates. The contrast spectra of 2D nanosheets with different layer numbers are in agreement with theoretical calculations based on Fresnel's law, indicating that this method provides an unambiguous and nondestructive contrast spectra fingerprint for identifying single-and few-layered transition metal dichalcogenides. The results will greatly help in fundamental research and application.
基金financially supported by the National Basic Research Program of China (973 Program) (2012CB224800)
文摘The solid-phase extraction using Pd-Al2O3 as the stationary phase was employed to pre-separate the sulfur compounds in straight-run diesel. The isolating effect was evaluated quantitatively by gas chromatography with a sulfur chemiluminescence detector to harvest a satisfactory result. The identification of the structure of sulfur compounds by comprehensive two-dimensional gas chromatography coupled with the time-of-flight mass spectrometry indicated that cyclo-sulfides, benzothiophenes, dibenzothiophenes, dihydro-benzothiophenes and tetrahydro-dibenzothiophenes were included in straightrun diesel obtained from the Arab medium crude(AM). A total of 259 individual compounds were detected and their molecular structures were identified. The analytical method was approved as an effective way to characterize the composition of sulfur compounds, which reduced the interference of other compounds, facilitated the data presentation and provided more detailed information about molecular composition of sulfur compounds.
基金This work was supported byTechnological Developing Committee of Wenzhou(No.Y2004A044).
文摘Objective: To establish and optimize the two-demensional electrophoresis maps of uterine leiomyoma and to study the difference of global protein patterns between uterine leiomyoma and normal myometrium. Methods: Using Two-dimensional electrophoresis followed by computer-assisted image analysis, the differential proteins between uterine leiomyoma and normal myometrium were compared. Results: The well-resolved and reproducible two-dimensional gel electrophoresis patterns of uterine leiomyoma and normal myometrium were established. Totally 1085±108 and 1103±151 protein spots were obtained by using the pH 4-7 IPG strips in uterine leiomyoma and normal myometrium map, respectively, of which 7 spots increased and 15 spots decreased in quantity in uterine leiomyoma compared with normal myometrium. Conclusion: The differentially expressed proteins are useful for studying the mechanism of the cause of uterine leiomyoma.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金supported by the National Key R&D Program of China(2021YFC2203502 and 2022YFF0711502)the National Natural Science Foundation of China(NSFC)(12173077)+4 种基金the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095 and 2023TSYCCX0112)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(PTYQ2022YZZD01)China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.
基金support from the National Natural Science Foundation of China(Grant Nos:52379103 and 52279103)the Natural Science Foundation of Shandong Province(Grant No:ZR2023YQ049).
文摘Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.
基金supported by the National Defense Fundamental Research Project(No.JCKY2022404C005)the Nuclear Energy Development Project(No.23ZG6106)+1 种基金the Sichuan Scientific and Technological Achievements Transfer and Transformation Demonstration Project(No.2023ZHCG0026)the Mianyang Applied Technology Research and Development Project(No.2021ZYZF1005)。
文摘In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金supported by the National Natural Science Foundation of China(42122017,41821002)the Independent Innovation Research Program of China University of Petroleum(East China)(21CX06001A).
文摘It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in logging curves,this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification,working with the Shahejie For-mation,Bohai Bay Basin,China.The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features.The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition(mineral composition+total organic carbon)of shale,while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type.The research results show that the grayscale phase model can identify shale lithofacies well,and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition,as well as corresponding re-lationships between relative amplitudes and laminae development in shales.Four lithofacies are iden-tified in the target layer of the study area:massive mixed shale,laminated mixed shale,massive calcareous shale and laminated calcareous shale.This method can not only effectively characterize the material composition of shale,but also numerically characterize the development degree of shale laminae,and solve the problem that difficult to identify millimeter-scale laminae based on logging curves,which can provide technical support for shale lithofacies identification,sweet spot evaluation and prediction of complex continental lacustrine basins.
基金support by the National Natural Science Foundation of China(Grant No.52402520)。
文摘Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.
文摘The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.
基金The National Natural Science Foundation of China(No.52338011,52378291)Young Elite Scientists Sponsorship Program by CAST(No.2022-2024QNRC0101).
文摘To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.
文摘In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
基金supported by the National Key Research and Development Program of China(No.2022YFB4300902)。
文摘Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoofing problems.However,the effects of circuit changes over time often lead to a decline in identification accuracy within open-time set.This paper proposes an ADS-B transmitter identification method to solve the degradation of identification accuracy.First,a real-time data processing system is established to receive and store ADS-B signals to meet the conditions for open-time set.The system possesses the following functionalities:data collection,data parsing,feature extraction,and identity recognition.Subsequently,a two-dimensional TimeFrequency Feature Diagram(TFFD)is proposed as a signal pre-processing method.The TFFD is constructed from the received ADS-B signal and the reconstructed signal for input to the recognition model.Finally,incorporating a frequency offset layer into the Swin Transformer architecture,a novel recognition network framework is proposed.This integration can enhance the network recognition accuracy and robustness by tailoring to the specific characteristics of ADSB signals.Experimental results indicate that the proposed recognition architecture achieves recognition accuracy of 95.86%in closed-time set and 84.33%in open-time set,surpassing other algorithms.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the Shihezi University High-Level Talents Research Startup Project(Project No.RCZK202521)the National Natural Science Foundation of China(Grant Nos.12271066,11871121,12171405)+1 种基金the Chongqing Natural Science Foundation Joint Fund for Innovation and Development Project(Project No.CSTB2024NSCQLZX0085)the Chongqing Normal University Foundation(Grant No.23XLB018).
文摘This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.