Rip currents are a significant threat to swimmers worldwide,responsible for numerous drowning incidents each year.In Vietnam,Bai Dai Beach in Cam Ranh Bay,Khanh Hoa Province,has experienced an increase in drowning eve...Rip currents are a significant threat to swimmers worldwide,responsible for numerous drowning incidents each year.In Vietnam,Bai Dai Beach in Cam Ranh Bay,Khanh Hoa Province,has experienced an increase in drowning events due to rip currents in recent years.To address this issue,a comprehensive study was conducted based on developing a depth-averaged 2D hydrodynamic model to simulate rip currents in the Bai Dai-Cam Ranh coast.The HYDIST-2D numerical model was applied to simulate the rip current evolution in space and time for the study area.The results showed that the HYDIST-2D numerical model can accurately predict the location,magnitude,and microstructure of rip currents,including rip current speed,width,and length.The simulation results revealed that the rip current speed is greater during the low tide phase,with an average speed of 0.5 m s^(-1),while during high tide,the rip current speed is lower,around 0.1–0.8 m s^(-1).The width and length of the rip current also vary with the tide phase,with a wider and longer rip current observed during the low tide phase.The results also showed that the rip current speed and microstructure are influenced by the wave features,tide current,and bathymetry of the study area.The present study provides valuable insights into the dynamics of rip currents in the Bai Dai-Cam Ranh coast.The findings can be used to support the management of bathing activities and provide early warnings for potential risks associated with rip currents.展开更多
Erosion is an important issue in soil science and is related to many environmental problems,such as soil erosion and sediment transport.Establishing a simulation model suitable for soil erosion prediction is of great ...Erosion is an important issue in soil science and is related to many environmental problems,such as soil erosion and sediment transport.Establishing a simulation model suitable for soil erosion prediction is of great significance not only to accurately predict the process of soil separation by runoff,but also improve the physical model of soil erosion.In this study,we develop a graphic processing unit(GPU)-based numerical model that combines two-dimensional(2D)hydrodynamic and Green-Ampt(G-A)infiltration modelling to simulate soil erosion.A Godunov-type scheme on a uniform and structured square grid is then generated to solve the relevant shallow water equations(SWEs).The highlight of this study is the use of GPU-based acceleration technology to enable numerical models to simulate slope and watershed erosion in an efficient and high-resolution manner.The results show that the hydrodynamic model performs well in simulating soil erosion process.Soil erosion is studied by conducting calculation verification at the slope and basin scales.The first case involves simulating soil erosion process of a slope surface under indoor artificial rainfall conditions from 0 to 1000 s,and there is a good agreement between the simulated values and the measured values for the runoff velocity.The second case is a river basin experiment(Coquet River Basin)that involves watershed erosion.Simulations of the erosion depth change and erosion cumulative amount of the basin during a period of 1-40 h show an elevation difference of erosion at 0.5-3.0 m,especially during the period of 20-30 h.Nine cross sections in the basin are selected for simulation and the results reveal that the depth of erosion change value ranges from-0.86 to-2.79 m and the depth of deposition change value varies from 0.38 to 1.02 m.The findings indicate that the developed GPU-based hydrogeomorphological model can reproduce soil erosion processes.These results are valuable for rainfall runoff and soil erosion predictions on rilled hillslopes and river basins.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m...This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.展开更多
In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which enca...In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which encapsulates high-performance technology for the numerical simulation of complex applications.Two serial codes,radiation hydrodynamics RH2D and particle transport Sn2D,have been integrated into RHSn2D on JASMIN infrastructure,which can efficiently use thousands of processors to simulate the complex multi-physics phenomena.Moreover,the non-conforming processors strategy has ensured RHSn2D against the serious load imbalance between radiation hydrodynamics and particle transport for large scale parallel simulations.Numerical results show that RHSn2D achieves a parallel efficiency of 17.1%using 90720 cells on 8192 processors compared with 256 processors in the same problem.展开更多
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch...Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.展开更多
We present and explore a new shock-capturing particle hydrodynamics approach.Our starting point is a commonly used discretization of smoothed particle hydrodynamics.We enhance this discretization with Roe’s approx-im...We present and explore a new shock-capturing particle hydrodynamics approach.Our starting point is a commonly used discretization of smoothed particle hydrodynamics.We enhance this discretization with Roe’s approx-imate Riemann solver,we identify its dissipative terms,and in these terms,we use slope-limited linear reconstruction.All gradients needed for our method are calculated with linearly reproducing kernels that are constructed to enforce the two lowest-order consistency relations.We scrutinize our reproducing kernel implementation carefully on a“glass-like”particle distribution,and we find that constant and linear functions are recovered to machine precision.We probe our method in a series of challenging 3D benchmark problems ranging from shocks over instabilities to Schulz-Rinne-type vorticity-creating shocks.All of our simulations show excellent agreement with analytic/reference solutions.展开更多
Mangrove ecosystems along Vietnam’s coastline face significant degradation due to human activities,despite their crucial role in coastal protection against natural hazards.This study aims to assess the spatial and te...Mangrove ecosystems along Vietnam’s coastline face significant degradation due to human activities,despite their crucial role in coastal protection against natural hazards.This study aims to assess the spatial and temporal changes in mangrove coverage along Vietnam’s southern coast by integrating remote sensing techniques with hydrodynamic model simulations.The research methodology combines the Collect Earth tool analysis of Spot-4 and Planet satellite imagery(2000–2020)with Mike 21-HD two-dimensional(2D)hydrodynamic modeling to evaluate mangrove coverage changes by simulating shoreline erosion.Results analysis reveals that a significant increase of 109.83 ha in mangrove area within Vinh Chau Town of Soc Trang Province during the period 2010–2020,predominantly in the eastern region.Hydrodynamic simulations demonstrate that the coastal zone is primarily influenced by the interaction of nearshore currents,East Sea tides,and seasonal monsoon wave patterns.The model results effectively capture the complex interactions between these hydrodynamic factors and mangrove distribution.These findings not only validate the effectiveness of combining remote sensing and hydrodynamic modeling for mangrove assessment but also provide crucial insights for sustainable coastal ecosystem management.The study’s integrated approach offers a robust framework for monitoring mangrove dynamics and developing evidence-based conservation strategies,highlighting the importance of maintaining these vital ecosystems for coastal protection.展开更多
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ...Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.展开更多
The synergetic technology of hydrodynamic cavitation(HC)and peroxydisulfate(PDS)has been adopted for the treatment of organic pollutants,while the rationale behind the thermal-activation of PDS in this process remains...The synergetic technology of hydrodynamic cavitation(HC)and peroxydisulfate(PDS)has been adopted for the treatment of organic pollutants,while the rationale behind the thermal-activation of PDS in this process remains lacking.This paper presented investigation on the degradation of tetracycline under two types of operating conditions,including“internal reaction conditions”(pH value and TC/PDS molar ratio)and“external physical conditions”(hole shape,solution temperature and inlet pressure).Special emphasis was paid on the analysis of thermal effects through a robust modeling approach.The results showed that a synergy index of 6.26 and a degradation rate of 56.71%could be obtained by the HC-PDS process,respectively,when the reaction conditions were optimized.Quenching experiment revealed that·OH and·SO_(4)^(-)were the predominant free radicals and their contribution to the degradation was 75.4%and 24.6%respectively,since a part of·SO_(4)^(-)was transformed into·OH in the solution.The thermal activation of PDS mainly occurred near the hole where the fitting temperature was around 340 K,while·OH was generated in the bubble collapse region downstream the hole,where the temperature was much higher and favorable for the cleavage of water molecular.The average temperature under different external physical conditions was in good consistence with the degradation rates.This research developed a useful method to effectively evaluate the activation extent of PDS by HC and could provide reliable guidance for further development of cavitational reactors to treat organic pollutants based on this hybrid approach.展开更多
Particle transport is a fundamental aspect of various systems,from artificial to biological.A common assumption is that particle motion follows Markovian(memoryless)processes in the absence of interaction between part...Particle transport is a fundamental aspect of various systems,from artificial to biological.A common assumption is that particle motion follows Markovian(memoryless)processes in the absence of interaction between particles.However,hydrodynamic memory and the interaction between particles are ubiquitous,leaving many fundamental questions unanswered regarding transport of interacting particles involving hydrodynamic drag in corrugated channels,as described by the fractional Langevin equation.This study examines the hydrodynamic transport of interacting non-Brownian particles moving within a corrugated channel.We propose a method that relies on factors such as temperature,the driving force to alternate between no transport and finite net transport.Of importance is to note that the absence of transport results from the clogging,while the transport consists of collective motion and independent motion.The transport systems investigated in this work suggest the potential for sensor functionality within the system.Our findings may prove valuable for exploring the transport with hydrodynamic memory in various fields,including biology,physics,and chemistry.展开更多
The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate...The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate the flow field of a semi-submersible against extreme waves,a model simulating solitary wave interactions with the semi-submersible system was developed via the meshless smoothed particle hydrodynamics(SPH)method and Rayleigh’s theory.Notably,the wave surface and wave load results obtained from the SPH model,compared with those of OpenFOAM,result in an interaction test case between solitary waves and partially submerged rectangular obstacles and show good agreement,with a maximum relative error of 3.4%.An analysis of the calculated results of the semi-submersible facing solitary waves revealed several key findings:overtopping,which decreases with increasing water depth,occurs on the structure when the non-submerged ratio is 0.33 and the wave height surpasses 0.2 m.The transmission coefficient decreases with increasing wave height but increases as the water depth increases.Furthermore,the reflection coefficient peaks at a wave height H0=0.2 m.The dissipation coefficient displays a valley trend with a small water depth,whereas it increases monotonically with increasing water depth.The dissipation coefficient decreases with increasing water depth.展开更多
Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulati...Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulation method consisting of hydrodynamic and structural calculations has been used to evaluate a catamaran pontoon’s motion and structural integrity.Four different space sizes are set for the pontoon system:5 m,5.5 m,6 m,and 6.5 m.The frequency domain shows that the pontoon space affects the RAO in wave periods ranging from 3 s to 5 s.At wave periods of 3 s,4 s,and 5 s,the pontoon space significantly affects the maximum motion and chain tension parameter values,which are evaluated via time domain simulation.The critical stress of the pontoon is shown at a wave period of 5 s for 5 m and 5.5 m of pontoon space,which shows that the stress can reach 248 MPa.展开更多
Spin polarization and spin transport are common phenomena in many quantum systems.Relativistic spin hydrodynamics provides an effective low-energy framework to describe these processes in quantum many-body systems.The...Spin polarization and spin transport are common phenomena in many quantum systems.Relativistic spin hydrodynamics provides an effective low-energy framework to describe these processes in quantum many-body systems.The fundamental symmetry underlying relativistic spin hydrodynamics is angular momentum conservation,which naturally leads to interconversion between spin and orbital angular momenta.This inter-conversion is a key feature of relativistic spin hydrodynamics,which is closely related to entropy production and introduces ambiguity in the construction of constitutive relations.In this article,we present a pedagogical introduction of relativistic spin hydrodynamics.We demonstrate how to derive constitutive relations by applying local thermodynamic laws and explore several distinctive aspects of spin hydrodynamics.These include pseudo-gauge ambiguity,the behavior of the system in the presence of strong vorticity,and the challenges of modeling the freeze-out of spin in heavy-ion collisions.We also outline some future prospects for spin hydrodynamics.展开更多
Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of...Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.展开更多
It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament ch...It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament chemical vapor deposition setup,followed by annealing treatment under different temperatures at ambient pressure.The results indicate that when the annealing temperature increases from 700℃ to 1000℃,the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm.Meanwhile,the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase.As the annealing temperature continues to rise to 1100℃,a significant aggregation of Ta-containing compounds is observed in the samples,with no diamond structure detected.This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond.This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond.展开更多
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef...Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.展开更多
The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes ...The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes a sudden,local pressure rise,further expanding as primary shock wave in the fluid and developing a cavity.It is possible that the entire tank ruptures due to the loads transferred through the fluid to its surrounding structure.In the past decades,additionally to experimental investigations,HRAM has been studied using various computational approaches particularly focusing on the description of the Fluid-Structure Interaction(FSI).This article reviews the published experimental,analytical and numerical results and delivers a chronological overview since the end of World War II.Furthermore,HRAM mitigation measures are highlighted,which have been developed with the experimental,analytical and numerical toolboxes matured over the past 80 years.展开更多
文摘Rip currents are a significant threat to swimmers worldwide,responsible for numerous drowning incidents each year.In Vietnam,Bai Dai Beach in Cam Ranh Bay,Khanh Hoa Province,has experienced an increase in drowning events due to rip currents in recent years.To address this issue,a comprehensive study was conducted based on developing a depth-averaged 2D hydrodynamic model to simulate rip currents in the Bai Dai-Cam Ranh coast.The HYDIST-2D numerical model was applied to simulate the rip current evolution in space and time for the study area.The results showed that the HYDIST-2D numerical model can accurately predict the location,magnitude,and microstructure of rip currents,including rip current speed,width,and length.The simulation results revealed that the rip current speed is greater during the low tide phase,with an average speed of 0.5 m s^(-1),while during high tide,the rip current speed is lower,around 0.1–0.8 m s^(-1).The width and length of the rip current also vary with the tide phase,with a wider and longer rip current observed during the low tide phase.The results also showed that the rip current speed and microstructure are influenced by the wave features,tide current,and bathymetry of the study area.The present study provides valuable insights into the dynamics of rip currents in the Bai Dai-Cam Ranh coast.The findings can be used to support the management of bathing activities and provide early warnings for potential risks associated with rip currents.
基金This research was funded by the National Natural Science Foundation of China(52079106,52009104,51609199)the National Key Research and Development Program of China(2016YFC0402704).
文摘Erosion is an important issue in soil science and is related to many environmental problems,such as soil erosion and sediment transport.Establishing a simulation model suitable for soil erosion prediction is of great significance not only to accurately predict the process of soil separation by runoff,but also improve the physical model of soil erosion.In this study,we develop a graphic processing unit(GPU)-based numerical model that combines two-dimensional(2D)hydrodynamic and Green-Ampt(G-A)infiltration modelling to simulate soil erosion.A Godunov-type scheme on a uniform and structured square grid is then generated to solve the relevant shallow water equations(SWEs).The highlight of this study is the use of GPU-based acceleration technology to enable numerical models to simulate slope and watershed erosion in an efficient and high-resolution manner.The results show that the hydrodynamic model performs well in simulating soil erosion process.Soil erosion is studied by conducting calculation verification at the slope and basin scales.The first case involves simulating soil erosion process of a slope surface under indoor artificial rainfall conditions from 0 to 1000 s,and there is a good agreement between the simulated values and the measured values for the runoff velocity.The second case is a river basin experiment(Coquet River Basin)that involves watershed erosion.Simulations of the erosion depth change and erosion cumulative amount of the basin during a period of 1-40 h show an elevation difference of erosion at 0.5-3.0 m,especially during the period of 20-30 h.Nine cross sections in the basin are selected for simulation and the results reveal that the depth of erosion change value ranges from-0.86 to-2.79 m and the depth of deposition change value varies from 0.38 to 1.02 m.The findings indicate that the developed GPU-based hydrogeomorphological model can reproduce soil erosion processes.These results are valuable for rainfall runoff and soil erosion predictions on rilled hillslopes and river basins.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the Shihezi University High-Level Talents Research Startup Project(Project No.RCZK202521)the National Natural Science Foundation of China(Grant Nos.12271066,11871121,12171405)+1 种基金the Chongqing Natural Science Foundation Joint Fund for Innovation and Development Project(Project No.CSTB2024NSCQLZX0085)the Chongqing Normal University Foundation(Grant No.23XLB018).
文摘This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.
基金National Natural Science Foundation of China(12471367)。
文摘In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which encapsulates high-performance technology for the numerical simulation of complex applications.Two serial codes,radiation hydrodynamics RH2D and particle transport Sn2D,have been integrated into RHSn2D on JASMIN infrastructure,which can efficiently use thousands of processors to simulate the complex multi-physics phenomena.Moreover,the non-conforming processors strategy has ensured RHSn2D against the serious load imbalance between radiation hydrodynamics and particle transport for large scale parallel simulations.Numerical results show that RHSn2D achieves a parallel efficiency of 17.1%using 90720 cells on 8192 processors compared with 256 processors in the same problem.
基金supported by Beijing Natural Science Foundation(Nos.2232037 and 2242035)the National Natural Science Foundation of China(Nos.22005012,22105012 and 51803183)+1 种基金Chunhui Plan Cooperative Project of Ministry of Education(No.202201298)the China Postdoctoral Science Foundation Funded Project(No.2023M733520).
文摘Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.
基金supported by the Swedish Research Council(VR)under grant number 2020-05044by the research environment grant"Gravitational Radiation and Electromagnetic Astrophysical Transients"(GREAT)funded by the Swedish Research Council(VR)under Dnr 2016-06012+2 种基金by the Knut and Alice Wallenberg Foundation under grant Dnr.KAW 2019.0112by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany's Excellence Strategy-EXC 2121"Quantum Universe"-390833306by the European Research Council(ERC)Advanced Grant INSPIRATION under the European Union's Horizon 2020 Research and Innovation Programme(Grant agreement No.101053985).
文摘We present and explore a new shock-capturing particle hydrodynamics approach.Our starting point is a commonly used discretization of smoothed particle hydrodynamics.We enhance this discretization with Roe’s approx-imate Riemann solver,we identify its dissipative terms,and in these terms,we use slope-limited linear reconstruction.All gradients needed for our method are calculated with linearly reproducing kernels that are constructed to enforce the two lowest-order consistency relations.We scrutinize our reproducing kernel implementation carefully on a“glass-like”particle distribution,and we find that constant and linear functions are recovered to machine precision.We probe our method in a series of challenging 3D benchmark problems ranging from shocks over instabilities to Schulz-Rinne-type vorticity-creating shocks.All of our simulations show excellent agreement with analytic/reference solutions.
基金supported by Environmental Protection Project 2023-2024,with the Joint Vietnam-Russia Tropical Science and Technology Research Center(Southern Branch)as the lead Institution.
文摘Mangrove ecosystems along Vietnam’s coastline face significant degradation due to human activities,despite their crucial role in coastal protection against natural hazards.This study aims to assess the spatial and temporal changes in mangrove coverage along Vietnam’s southern coast by integrating remote sensing techniques with hydrodynamic model simulations.The research methodology combines the Collect Earth tool analysis of Spot-4 and Planet satellite imagery(2000–2020)with Mike 21-HD two-dimensional(2D)hydrodynamic modeling to evaluate mangrove coverage changes by simulating shoreline erosion.Results analysis reveals that a significant increase of 109.83 ha in mangrove area within Vinh Chau Town of Soc Trang Province during the period 2010–2020,predominantly in the eastern region.Hydrodynamic simulations demonstrate that the coastal zone is primarily influenced by the interaction of nearshore currents,East Sea tides,and seasonal monsoon wave patterns.The model results effectively capture the complex interactions between these hydrodynamic factors and mangrove distribution.These findings not only validate the effectiveness of combining remote sensing and hydrodynamic modeling for mangrove assessment but also provide crucial insights for sustainable coastal ecosystem management.The study’s integrated approach offers a robust framework for monitoring mangrove dynamics and developing evidence-based conservation strategies,highlighting the importance of maintaining these vital ecosystems for coastal protection.
基金supported by the National Key Research and Development Project(No.2019YFA0705403)the National Natural Science Foundation of China(No.T2293693,52273311)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)and the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004,JCYJ20220818100806014)Shenzhen Major Science and Technology Projects(Nos.KCXFZ20240903094013018,KCXFZ20240903094203005)。
文摘Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.
基金supported by the National Natural Science Foundation of China(Nos.22136003 and 21972073)the Opening foundation of the Engineering Research Center of Ecoenvironment in Three Gorges Reservoir Region,Ministry of Education(No.KF2023-01)the Natural Science Foundation of Yichang City(No.A22-3-005)。
文摘The synergetic technology of hydrodynamic cavitation(HC)and peroxydisulfate(PDS)has been adopted for the treatment of organic pollutants,while the rationale behind the thermal-activation of PDS in this process remains lacking.This paper presented investigation on the degradation of tetracycline under two types of operating conditions,including“internal reaction conditions”(pH value and TC/PDS molar ratio)and“external physical conditions”(hole shape,solution temperature and inlet pressure).Special emphasis was paid on the analysis of thermal effects through a robust modeling approach.The results showed that a synergy index of 6.26 and a degradation rate of 56.71%could be obtained by the HC-PDS process,respectively,when the reaction conditions were optimized.Quenching experiment revealed that·OH and·SO_(4)^(-)were the predominant free radicals and their contribution to the degradation was 75.4%and 24.6%respectively,since a part of·SO_(4)^(-)was transformed into·OH in the solution.The thermal activation of PDS mainly occurred near the hole where the fitting temperature was around 340 K,while·OH was generated in the bubble collapse region downstream the hole,where the temperature was much higher and favorable for the cleavage of water molecular.The average temperature under different external physical conditions was in good consistence with the degradation rates.This research developed a useful method to effectively evaluate the activation extent of PDS by HC and could provide reliable guidance for further development of cavitational reactors to treat organic pollutants based on this hybrid approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.12365007 and 12265017)Yunnan Fundamental Research Projects(Grant Nos.202101AS070018 and 202101AV070015)+1 种基金the Scientific Research Foundation of the Yunnan Provincial Department of Education(Grant No.2023J1208)Xingdian Talents Support Program,and Yunnan Province Ten Thousand Talents Plan Young&Elite Talents Project,and Yunnan Province Computational Physics and Applied Science and Technology Innovation Team.The numerical simulation and significance estimation were performed on the Key Laboratory of High-Density Computing,Zhaotong University。
文摘Particle transport is a fundamental aspect of various systems,from artificial to biological.A common assumption is that particle motion follows Markovian(memoryless)processes in the absence of interaction between particles.However,hydrodynamic memory and the interaction between particles are ubiquitous,leaving many fundamental questions unanswered regarding transport of interacting particles involving hydrodynamic drag in corrugated channels,as described by the fractional Langevin equation.This study examines the hydrodynamic transport of interacting non-Brownian particles moving within a corrugated channel.We propose a method that relies on factors such as temperature,the driving force to alternate between no transport and finite net transport.Of importance is to note that the absence of transport results from the clogging,while the transport consists of collective motion and independent motion.The transport systems investigated in this work suggest the potential for sensor functionality within the system.Our findings may prove valuable for exploring the transport with hydrodynamic memory in various fields,including biology,physics,and chemistry.
基金financially supported by the Basic and Applied Basic Research Foundation of Guangdong Province(Grant Nos.2023A1515010890 and 2022A1515240039)the National Natural Science Foundation of China(Grant No.52001071)+4 种基金the Special Fund Competition Allocation Project of Guangdong Science and Technology Innovation Strategy(Grant No.2023A01022)the Non-funded Science and Technology Research Program Project of Zhanjiang(Grant No.2021B01416)Student Innovation Team Project of Guangdong Ocean University(Grant No.CXTD2023012)the Doctor Initiate Projects of Guangdong Ocean University(Grant Nos.060302072103 and R20068)the Marine Youth Talent Innovation Project of Zhanjiang(Grant No.2021E05009).
文摘The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate the flow field of a semi-submersible against extreme waves,a model simulating solitary wave interactions with the semi-submersible system was developed via the meshless smoothed particle hydrodynamics(SPH)method and Rayleigh’s theory.Notably,the wave surface and wave load results obtained from the SPH model,compared with those of OpenFOAM,result in an interaction test case between solitary waves and partially submerged rectangular obstacles and show good agreement,with a maximum relative error of 3.4%.An analysis of the calculated results of the semi-submersible facing solitary waves revealed several key findings:overtopping,which decreases with increasing water depth,occurs on the structure when the non-submerged ratio is 0.33 and the wave height surpasses 0.2 m.The transmission coefficient decreases with increasing wave height but increases as the water depth increases.Furthermore,the reflection coefficient peaks at a wave height H0=0.2 m.The dissipation coefficient displays a valley trend with a small water depth,whereas it increases monotonically with increasing water depth.The dissipation coefficient decreases with increasing water depth.
基金financially supported by the Riset Pengembangan dan Penerapan(RPP),Diponegoro University 2023 research scheme with contract number 609-18/UN7.D2/PP/VIII/2023.
文摘Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulation method consisting of hydrodynamic and structural calculations has been used to evaluate a catamaran pontoon’s motion and structural integrity.Four different space sizes are set for the pontoon system:5 m,5.5 m,6 m,and 6.5 m.The frequency domain shows that the pontoon space affects the RAO in wave periods ranging from 3 s to 5 s.At wave periods of 3 s,4 s,and 5 s,the pontoon space significantly affects the maximum motion and chain tension parameter values,which are evaluated via time domain simulation.The critical stress of the pontoon is shown at a wave period of 5 s for 5 m and 5.5 m of pontoon space,which shows that the stress can reach 248 MPa.
基金supported by the Natural Science Foundation of Shanghai(No.23JC1400200)National Natural Science Foundation of China(Nos.12225502,12075061,and 12147101)the National Key Research and Development Program of China(No.2022YFA1604900)。
文摘Spin polarization and spin transport are common phenomena in many quantum systems.Relativistic spin hydrodynamics provides an effective low-energy framework to describe these processes in quantum many-body systems.The fundamental symmetry underlying relativistic spin hydrodynamics is angular momentum conservation,which naturally leads to interconversion between spin and orbital angular momenta.This inter-conversion is a key feature of relativistic spin hydrodynamics,which is closely related to entropy production and introduces ambiguity in the construction of constitutive relations.In this article,we present a pedagogical introduction of relativistic spin hydrodynamics.We demonstrate how to derive constitutive relations by applying local thermodynamic laws and explore several distinctive aspects of spin hydrodynamics.These include pseudo-gauge ambiguity,the behavior of the system in the presence of strong vorticity,and the challenges of modeling the freeze-out of spin in heavy-ion collisions.We also outline some future prospects for spin hydrodynamics.
基金supported by the National Natural Science Foundation of China(Nos.52272290,21972030,52073119,and 52373210)the Natural Science Foundation of Jilin Province(No.20230101029JC)+1 种基金the Fundamental Research Program of Shanxi Province(No.202303021212159)the Monash University Malaysia–ASEAN grant(No.ASE-000010)。
文摘Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.U1809210)the International Science Technology Cooperation Program of China(Grant No.2014DFR51160)+3 种基金the One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)the National Natural Science Foundation of China(Grant Nos.50972129,50602039,and 52102052)the Fund from Institute of Wenzhou,Zhejiang University(Grant Nos.XMGL-CX-202305 and XMGLKJZX-202307)the Project from Tanghe Scientific&Technology Company(Grant No.KYY-HX-20230024).
文摘It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament chemical vapor deposition setup,followed by annealing treatment under different temperatures at ambient pressure.The results indicate that when the annealing temperature increases from 700℃ to 1000℃,the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm.Meanwhile,the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase.As the annealing temperature continues to rise to 1100℃,a significant aggregation of Ta-containing compounds is observed in the samples,with no diamond structure detected.This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond.This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond.
基金Supported by National Natural Science Foundation of China(Grant No.52205072).
文摘Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.
文摘The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes a sudden,local pressure rise,further expanding as primary shock wave in the fluid and developing a cavity.It is possible that the entire tank ruptures due to the loads transferred through the fluid to its surrounding structure.In the past decades,additionally to experimental investigations,HRAM has been studied using various computational approaches particularly focusing on the description of the Fluid-Structure Interaction(FSI).This article reviews the published experimental,analytical and numerical results and delivers a chronological overview since the end of World War II.Furthermore,HRAM mitigation measures are highlighted,which have been developed with the experimental,analytical and numerical toolboxes matured over the past 80 years.