The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(U...The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of ...In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).展开更多
We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harm...We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential param- eter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.展开更多
The broadband response of second harmonic generation(SHG)is experimentally observed in a two-dimensional(2D)quasi-random quasi-phase-matching(QPM)structure.A nonlinear conversion efficiency of more than 50%is obtained...The broadband response of second harmonic generation(SHG)is experimentally observed in a two-dimensional(2D)quasi-random quasi-phase-matching(QPM)structure.A nonlinear conversion efficiency of more than 50%is obtained.Due to the line-type distribution of the reciprocal vector,the second harmonic wave(SHW)covering a broad frequency band is efficiently radiated in the shape of one single spot or three spots instead of a stripe.This is believed to be favorable for its practical application and paves the way for the use of ultrahigh-bandwidth light sources and devices in modern optical technologies.展开更多
The propagator for an anisotropic two-dimension charged harmonic oscillator in the presence of a constant external magnetic field and a time-dependent electric field is exactly evaluated.Various special cases appearin...The propagator for an anisotropic two-dimension charged harmonic oscillator in the presence of a constant external magnetic field and a time-dependent electric field is exactly evaluated.Various special cases appearing in the literature can be obtained by properly setting the values of the parameters in our results.展开更多
We calculate the energy spectrum of three identical fermionic ultracold atoms in two different internal states confined in a two-dimensional anisotropic harmonic trap.Using the solutions of the corresponding two-body ...We calculate the energy spectrum of three identical fermionic ultracold atoms in two different internal states confined in a two-dimensional anisotropic harmonic trap.Using the solutions of the corresponding two-body problems obtained in our previous work(Chen et al 2020 Phys.Rev.A 101,053624),we derive the explicit transcendental equation for the eigen-energies,from which the energy spectrum is derived.Our results can be used for the calculation of the 3rd Virial coefficients or the studies of few-body dynamics.展开更多
Directed self-assembly has been used to create micro-nano scale patterns,including chiral periodic structures of organic molecules,for potential applications in optics,photonics,metamaterials,and medical and sensing t...Directed self-assembly has been used to create micro-nano scale patterns,including chiral periodic structures of organic molecules,for potential applications in optics,photonics,metamaterials,and medical and sensing technologies.This study presents a straightforward approach for fabricating large-scale chiral grating porphyrin assemblies through template-assisted techniques.The solution of tetrakis(4-sulfonatophenyl)porphyrin(TPPS)was induced by chiral amino acids(L/D-arginine and L/D-serine)to selfassemble into highly ordered chiral grating structures with the assistance of sodium dodecyl sulfate(SDS).The structures show precise line widths(5.5μm)and gaps(18μm).Using in situ optical microscopy and second harmonic generation(SHG)microscopy,the chiral characteristics and dynamic evolution of the template-assisted self-assembly are investigated.It is found that the chirality of amino acids induced TPPS self-assembled into chiral structures and the liquid contraction interface significantly enhanced the chirality of the assemblies.This study is significant for understanding the mechanism of chiral evolution and designing novel micro-nano materials with predetermined chiral properties.展开更多
In atomic dynamics, oscillation Mong different axes can be studied separately in the harmonic trap. When the trap is not harmonic, motion in different directions may couple together. In this work, we observe a two- di...In atomic dynamics, oscillation Mong different axes can be studied separately in the harmonic trap. When the trap is not harmonic, motion in different directions may couple together. In this work, we observe a two- dimensional oscillation by exciting atoms in one direction, where the atoms are transferred to an anharmonic region. Theoretical calculations are coincident to the experimental results. These oscillations in two dimensions not only can be used to measure trap parameters but also have potential applications in atomic interferometry and precise measurements.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m...This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.展开更多
The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex...The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.展开更多
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch...Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.展开更多
Spherical harmonic analysis(SHA)and synthesis(SHS)are widely used by researchers in various fields.Both numerical integration and least-squares methods can be employed for analysis and synthesis.However,these approach...Spherical harmonic analysis(SHA)and synthesis(SHS)are widely used by researchers in various fields.Both numerical integration and least-squares methods can be employed for analysis and synthesis.However,these approaches,when calculated via summation,are computationally intensive.Although the Fast Fourier Transform(FFT)algorithm is efficient,it is traditionally limited to processing global grid points starting from zero longitude.In this paper,we derive an improved FFT algorithm for spherical harmonic analysis and synthesis.The proposed algorithm eliminates the need for grid points to start at zero longitude,thereby expanding the applicability of FFT-based methods.Numerical experiments demonstrate that the new algorithm retains the computational efficiency of conventional FFT while achieving accuracy comparable to the summation method.Consequently,it enables direct harmonic coefficient calculation from global grid data without requiring interpolation to align with zero longitude.Additionally,the algrithm can generate grid points with equi-angular spacing using the improved FFT algorithm,starting from non-zero longitudes.To address the loss of orthogonality in latitude due to discrete spherical grids,a quadrature weight factor-dependent on grid type(e.g.,regular or Gauss grid)-is incorporated,as summarized in this study.展开更多
Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bu...Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.展开更多
This study examines the high-order harmonic radiation behavior of MgO crystals driven by combined pulses based on the numerical solution of the semiconductor Bloch equation.We found that compared with the monochromati...This study examines the high-order harmonic radiation behavior of MgO crystals driven by combined pulses based on the numerical solution of the semiconductor Bloch equation.We found that compared with the monochromatic pulse,the MgO crystal can radiate a continuous harmonic spectrum with two platforms driven by the three-color combined pulse.The reason is that under the three-color combined pulse,the electron ionization and recombination can be effectively controlled within a half-optical cycle of the laser pulse.Using this continuous spectrum,we synthesized an isolated attosecond pulse with a duration of approximately 370 as.This study provides a new perspective on all-solid-state compact optical devices.展开更多
The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the r...The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the railway power supply system.To address these challenges,this paper proposes a novel harmonic resonance prevention measure for RPC-network-train interaction system.Firstly,a harmonic model,a parallel resonance impedance model,a series resonance admittance model,and a control stability model are each established for the RPC-network-train interaction system.Secondly,a comprehensive resonance impact factor(CRIF)is proposed to efficiently and accurately identify the key components affecting resonance,and to provide the selection results of optimization parameters for resonance prevention.Next,the initially selected parameters are constrained by the requirements of ripple current,reactive power and stability.Subsequently,the impedance parameters(control parameters and filter parameters)of the RPC are optimized with the objective of reshaping the parallel resonance impedance and series resonance admittance of the RPC-network-train interaction system,ensuring the output current har-monics of RPC meet standards to achieve resonance prevention,while ensuring the stable operation of the RPC.Finally,the proposed resonance prevention measure is verified under both light load and heavy load conditions using a simulation platform and a hardware-in-the-loop experimental platform.展开更多
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ...Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.展开更多
基金supported by the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(Project No.241827012)the National Natural Science Foundation of China(Grant Nos.U22A6005 and 62271450)+1 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1301502,2024YFA1408701,and 2024YFA1408403)the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15)
文摘In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).
文摘We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential param- eter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.
基金by the National Natural Science Foundation of China under Grant No 10634080the National Basic Research Program of China under Grant Nos 2007CB613205 and 2007CB935703.
文摘The broadband response of second harmonic generation(SHG)is experimentally observed in a two-dimensional(2D)quasi-random quasi-phase-matching(QPM)structure.A nonlinear conversion efficiency of more than 50%is obtained.Due to the line-type distribution of the reciprocal vector,the second harmonic wave(SHW)covering a broad frequency band is efficiently radiated in the shape of one single spot or three spots instead of a stripe.This is believed to be favorable for its practical application and paves the way for the use of ultrahigh-bandwidth light sources and devices in modern optical technologies.
基金Supported by the National Natural Science Foundation of China under Grant No 10805029the Natural Science Foundation of Zhejiang Province under Grant No R6090717the K.C.Wong Magna Foundation of Ningbo University.
文摘The propagator for an anisotropic two-dimension charged harmonic oscillator in the presence of a constant external magnetic field and a time-dependent electric field is exactly evaluated.Various special cases appearing in the literature can be obtained by properly setting the values of the parameters in our results.
基金supported in part by the National Key Research and Development Program of China Grant No.2018YFA0306502NSAF(Grant No.U1930201)+1 种基金supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China under Grant No.21XNH088。
文摘We calculate the energy spectrum of three identical fermionic ultracold atoms in two different internal states confined in a two-dimensional anisotropic harmonic trap.Using the solutions of the corresponding two-body problems obtained in our previous work(Chen et al 2020 Phys.Rev.A 101,053624),we derive the explicit transcendental equation for the eigen-energies,from which the energy spectrum is derived.Our results can be used for the calculation of the 3rd Virial coefficients or the studies of few-body dynamics.
基金funding from the National Natural Science Foundation of China(NSFC,Nos.22173112 and 91856121)Chinese Academy of Sciences for support(No.YJKYYQ20180014)。
文摘Directed self-assembly has been used to create micro-nano scale patterns,including chiral periodic structures of organic molecules,for potential applications in optics,photonics,metamaterials,and medical and sensing technologies.This study presents a straightforward approach for fabricating large-scale chiral grating porphyrin assemblies through template-assisted techniques.The solution of tetrakis(4-sulfonatophenyl)porphyrin(TPPS)was induced by chiral amino acids(L/D-arginine and L/D-serine)to selfassemble into highly ordered chiral grating structures with the assistance of sodium dodecyl sulfate(SDS).The structures show precise line widths(5.5μm)and gaps(18μm).Using in situ optical microscopy and second harmonic generation(SHG)microscopy,the chiral characteristics and dynamic evolution of the template-assisted self-assembly are investigated.It is found that the chirality of amino acids induced TPPS self-assembled into chiral structures and the liquid contraction interface significantly enhanced the chirality of the assemblies.This study is significant for understanding the mechanism of chiral evolution and designing novel micro-nano materials with predetermined chiral properties.
基金Supported by the State Key Development Program for Basic Research of China under Grant No 2016YFA0301501the National Natural Science Foundation of China under Grant Nos 61475007,11334001 and 91336103
文摘In atomic dynamics, oscillation Mong different axes can be studied separately in the harmonic trap. When the trap is not harmonic, motion in different directions may couple together. In this work, we observe a two- dimensional oscillation by exciting atoms in one direction, where the atoms are transferred to an anharmonic region. Theoretical calculations are coincident to the experimental results. These oscillations in two dimensions not only can be used to measure trap parameters but also have potential applications in atomic interferometry and precise measurements.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the Shihezi University High-Level Talents Research Startup Project(Project No.RCZK202521)the National Natural Science Foundation of China(Grant Nos.12271066,11871121,12171405)+1 种基金the Chongqing Natural Science Foundation Joint Fund for Innovation and Development Project(Project No.CSTB2024NSCQLZX0085)the Chongqing Normal University Foundation(Grant No.23XLB018).
文摘This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.
基金supported by the National Nat-ural Science Foundation of China(Nos.12192251,12174185,92163216,and 62288101).
文摘The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.
基金supported by Beijing Natural Science Foundation(Nos.2232037 and 2242035)the National Natural Science Foundation of China(Nos.22005012,22105012 and 51803183)+1 种基金Chunhui Plan Cooperative Project of Ministry of Education(No.202201298)the China Postdoctoral Science Foundation Funded Project(No.2023M733520).
文摘Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.
基金supported by The National Natural Science Foundation of China(42374004).
文摘Spherical harmonic analysis(SHA)and synthesis(SHS)are widely used by researchers in various fields.Both numerical integration and least-squares methods can be employed for analysis and synthesis.However,these approaches,when calculated via summation,are computationally intensive.Although the Fast Fourier Transform(FFT)algorithm is efficient,it is traditionally limited to processing global grid points starting from zero longitude.In this paper,we derive an improved FFT algorithm for spherical harmonic analysis and synthesis.The proposed algorithm eliminates the need for grid points to start at zero longitude,thereby expanding the applicability of FFT-based methods.Numerical experiments demonstrate that the new algorithm retains the computational efficiency of conventional FFT while achieving accuracy comparable to the summation method.Consequently,it enables direct harmonic coefficient calculation from global grid data without requiring interpolation to align with zero longitude.Additionally,the algrithm can generate grid points with equi-angular spacing using the improved FFT algorithm,starting from non-zero longitudes.To address the loss of orthogonality in latitude due to discrete spherical grids,a quadrature weight factor-dependent on grid type(e.g.,regular or Gauss grid)-is incorporated,as summarized in this study.
基金supported by the Science and Technology Project of Guangdong Province,China(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.12434016)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFA1406900)the Fund of the National Postdoctoral Researcher Program(Grant No.GZB20240785).
文摘Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.Y23A040001)the National Natural Science Foundation of China(Grant Nos.12374029,12074145,and 11975012)+4 种基金the National Key Research and Development Program of China(Grant No.2019YFA0307700)the Research Foundation for Basic Research of Jilin ProvinceChina(Grant No.20220101003JC)the National College Students Innovation and Entrepreneurship Training Program(Grant No.202310350062)the Graduate Innovation Fund of Jilin University(Grant No.2024CX041)。
文摘This study examines the high-order harmonic radiation behavior of MgO crystals driven by combined pulses based on the numerical solution of the semiconductor Bloch equation.We found that compared with the monochromatic pulse,the MgO crystal can radiate a continuous harmonic spectrum with two platforms driven by the three-color combined pulse.The reason is that under the three-color combined pulse,the electron ionization and recombination can be effectively controlled within a half-optical cycle of the laser pulse.Using this continuous spectrum,we synthesized an isolated attosecond pulse with a duration of approximately 370 as.This study provides a new perspective on all-solid-state compact optical devices.
基金supported in part by the National Natural Science Foundation of China under Grant No.52277126.
文摘The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the railway power supply system.To address these challenges,this paper proposes a novel harmonic resonance prevention measure for RPC-network-train interaction system.Firstly,a harmonic model,a parallel resonance impedance model,a series resonance admittance model,and a control stability model are each established for the RPC-network-train interaction system.Secondly,a comprehensive resonance impact factor(CRIF)is proposed to efficiently and accurately identify the key components affecting resonance,and to provide the selection results of optimization parameters for resonance prevention.Next,the initially selected parameters are constrained by the requirements of ripple current,reactive power and stability.Subsequently,the impedance parameters(control parameters and filter parameters)of the RPC are optimized with the objective of reshaping the parallel resonance impedance and series resonance admittance of the RPC-network-train interaction system,ensuring the output current har-monics of RPC meet standards to achieve resonance prevention,while ensuring the stable operation of the RPC.Finally,the proposed resonance prevention measure is verified under both light load and heavy load conditions using a simulation platform and a hardware-in-the-loop experimental platform.
基金supported by the National Key Research and Development Project(No.2019YFA0705403)the National Natural Science Foundation of China(No.T2293693,52273311)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)and the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004,JCYJ20220818100806014)Shenzhen Major Science and Technology Projects(Nos.KCXFZ20240903094013018,KCXFZ20240903094203005)。
文摘Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.