Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deforma...Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.展开更多
The cross-section profiles of polymer deformation in the hot embossing lithography process were studied by finite element method for various temperature, time and pressure. In order to successfully fabricate high-freq...The cross-section profiles of polymer deformation in the hot embossing lithography process were studied by finite element method for various temperature, time and pressure. In order to successfully fabricate high-frequency grating lines, an optimal imprint condition was selected and the related experiments were carried out. The fabricated gratings were illuminated by the SEM image and AFM analysis, which agree well with the simulated results. Therefore, the finite element methods are helpful for a better comprehension of the polymer flow phenomena governing the pattern definition and the design of optimum processing conditions for successful grating fabrication.展开更多
The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolym...The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.展开更多
We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gas...We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.展开更多
The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.T...The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.The update of the CTFEL is now undergoing and will expand the frequency range from 0.1–4.2 THz to 0.1–125 THz.Two experimental stations for material spectroscopy and biomedicine will be built.A high harmonic generation(HHG)lightsource based beamline at the material spectroscopy experimental station for time-resolved angle-resolved photoemission spectroscopy(ARPES)research will be constructed and the optical design is presented.The HHG lightsource covers the extreme ultraviolet(XUV)photon energy range of 20–50 eV.A Czerny–Turner monochromator with two plane gratings worked in conical diffraction configuration is employed to maintain the transmission efficiency and preserve the pulse time duration.The calculated beamline transmission efficiency is better than 5%in the whole photon energy range.To our knowledge,this is the first time in China to combine THz-infrared FEL with HHG light source,and this experimental station will be a powerful and effective instrument that will give new research opportunities in the future for users doing research on the dynamic evolution of the excited electron band structure of a material’s surface.展开更多
Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments ...Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.展开更多
The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating s...The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.展开更多
We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, perfor...We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, performance characteristics,and fabrication tolerance of the two-dimensional grating coupler are thoroughly analyzed utilizing the three-dimensional finite-difference time-domain method. Experimentally,-7.2 d B of coupling efficiency is achieved with 1 d B bandwidth of64 nm. The polarization-dependent loss is about 0.4 d B around 1550 nm. Our work provides new polarization multiplexing approaches for the lithium niobate on insulator platform, paving the way for critical applications such as high-speed polarization multiplexed electro-optical modulators.展开更多
A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a ...A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.展开更多
基金National Natural Science Foundation of PRC(50374055)Shaanxi Key Lab of Ground Control(02JS43)
文摘Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.
基金supported by the National Basic Research Program of China (Grant No2010CB631005)National Natural Science Foundation of China (Grant Nos10625209,10732080,90916010)+1 种基金Beijing Natural Sciences Foundation (Grant No3072007)Program for New Century Excellent Talents (NCET) in Universities and Chinese Ministry of Education(Grant NoNCET-05-0059)
文摘The cross-section profiles of polymer deformation in the hot embossing lithography process were studied by finite element method for various temperature, time and pressure. In order to successfully fabricate high-frequency grating lines, an optimal imprint condition was selected and the related experiments were carried out. The fabricated gratings were illuminated by the SEM image and AFM analysis, which agree well with the simulated results. Therefore, the finite element methods are helpful for a better comprehension of the polymer flow phenomena governing the pattern definition and the design of optimum processing conditions for successful grating fabrication.
基金supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. 10676038)
文摘The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.
基金Supported by the State Key Development Program for Basic Research of China under Grant No 2016YFA0301501the National Natural Science Foundation of China under Grant Nos 11504328,61475007,11334001 and 91336103
文摘We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.
基金supported by Major Instrument Projects of Sichuan Province.
文摘The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.The update of the CTFEL is now undergoing and will expand the frequency range from 0.1–4.2 THz to 0.1–125 THz.Two experimental stations for material spectroscopy and biomedicine will be built.A high harmonic generation(HHG)lightsource based beamline at the material spectroscopy experimental station for time-resolved angle-resolved photoemission spectroscopy(ARPES)research will be constructed and the optical design is presented.The HHG lightsource covers the extreme ultraviolet(XUV)photon energy range of 20–50 eV.A Czerny–Turner monochromator with two plane gratings worked in conical diffraction configuration is employed to maintain the transmission efficiency and preserve the pulse time duration.The calculated beamline transmission efficiency is better than 5%in the whole photon energy range.To our knowledge,this is the first time in China to combine THz-infrared FEL with HHG light source,and this experimental station will be a powerful and effective instrument that will give new research opportunities in the future for users doing research on the dynamic evolution of the excited electron band structure of a material’s surface.
基金supported by the National High Technology Research and Development Program of China (No.2007AA03Z117)the Key Program of National Natural Science Foundation of China (No.50830201)
文摘Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.
基金Supported by Natural Science Foundation of Hebei Province under Grant No.A2010000004the National Natural Science Foundation of China under Grant Nos.10704022 and 60736042the Key Subject Construction Project of Hebei Province University
文摘The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.
基金supported in part by the National Key R&D Program of China(Nos.2019YFB1803900 and 2019YFA0705000)the National Natural Science Foundation of China(Nos.11690031,11761131001,and 11904061)+6 种基金the Key R&D Program of Guangdong Province(No.2018B030329001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X121)the Project of Key Laboratory of Radar Imaging and Microwave Photonics,Ministry of Education(No.RIMP2019003)the Innovation Fund of WNLO(No.2018WNLOKF010),the Guangzhou Science and Technology Program(No.201707010096)the Guangxi Youth and Middle Aged Ability Promotion Project(No.2019KY0126)the BaGui Scholar Programof Guangxi Province(No.02304002022C)the China Postdoctoral Science Foundation(No.2020M673554XB).
文摘We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, performance characteristics,and fabrication tolerance of the two-dimensional grating coupler are thoroughly analyzed utilizing the three-dimensional finite-difference time-domain method. Experimentally,-7.2 d B of coupling efficiency is achieved with 1 d B bandwidth of64 nm. The polarization-dependent loss is about 0.4 d B around 1550 nm. Our work provides new polarization multiplexing approaches for the lithium niobate on insulator platform, paving the way for critical applications such as high-speed polarization multiplexed electro-optical modulators.
基金supported by the National "973" Project of China(Nos.2010CB328202,2010CB328204,and 2012CB315604)the National Natural Science Foundation of China(Nos.61271191 and 61001124)+3 种基金the National "863" Project of China(No.2012AA011302)the Program for New Century Excellent Talents in University(No.NCET-12-0793)the Beijing Nova Program(No.2011065)the Fundamental Research Funds for the Central Universities
文摘A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.