When approximation order is an odd positive integer, a simple method is given to construct compactly supported orthogonal symmetric complex scaling function with dilation factor 3. Two corresponding orthogonal wavelet...When approximation order is an odd positive integer, a simple method is given to construct compactly supported orthogonal symmetric complex scaling function with dilation factor 3. Two corresponding orthogonal wavelets, one is symmetric and the other is antisymmetric about origin, are constructed explicitly. Additionally, when approximation order is an even integer 2, we also give a method to construct compactly supported orthogonal symmetric complex that illustrate the corresponding results. wavelets. In the end, there are several examples展开更多
A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolatio...A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolation the article shows the affectivity and the superiority of this algorithm.展开更多
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy vis...The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy viscosity hypothesis as a result from transportation of mean momentum over distance by the large structures and arrives at a shear stress expression including the second order derivatives of the mean velocity.However,his expression greatly overestimates the shear stress.This implies that the flow particles are unlikely to have enough memory of the mean momentum over distance.By assuming the departure from eddy viscosity hypothesis as a result from transportation of the shear stress contained in smaller eddies over distance by the large structures,the present author has arrived at a new shear stress expression.The shear stress estimated so far is in good agreement with the experiments.展开更多
On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized comple...On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized complex wavelet packet as multi-carrier modulation, a novel space-time block coded the MC-CDMA system based on complex wavelet packet and turbo coding is proposed, and the system bit error rate (BER) performance in the Rayleigh fading channel is investigated. The system can make full use of space-time block codes' transmit diversity and turbo codes' good ability against fading channel to improve the BER performance significantly, and it can also avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix (CP) by utilizing superior characteristics of the optimized complex wavelet packet. Simulation results show that the proposed space-time block coded MC-CDMA system based on the complex wavelet packet performs better than the conventional space-time block coded MC-CDMA (STBC-MC-CDMA) system, and slightly outperforms the STBC-MC-CDMA with CP. Moreover, the application of the space-time block coding technique concatenated with turbo codes strengthens the system ability to combat various interferences in fading channel further.展开更多
As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. ...As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.展开更多
In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts ...In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts an image from the RGB color space to the HSV color space and decomposes the V-channel by dual-tree complex wavelet transform. Next, an improved local adaptive tone mapping method is applied to process the low frequency components of the image, and a soft threshold denoising algorithm is used to denoise the high frequency components of the image. Then, the V-channel is rebuilt and the contrast is adjusted using white balance method. Finally, the processed image is converted back into the RGB color space as the enhanced result. Experimental results show that the proposed method can effectively improve the performance in terms of contrast enhancement, noise reduction and color reproduction.展开更多
Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new...Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.展开更多
In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagul...In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral p H. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at p H 5. At p H 5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation.Meanwhile, at p H 7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH)3. Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH〉 COO-〉NH deformation of amide Ⅱ〉 aliphatic hydroxyl C/OH at p H 5, and COO-〉aliphatic hydroxyl C/OH at p H 7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants.展开更多
The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective...The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.展开更多
Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some are...Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.展开更多
Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor...Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.展开更多
A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT ha...A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.展开更多
A rotational parameter Rθ has been introduced to complex wavelet transform (CWT). The rotational CWT (RCWT) corresponds to a matrix element 〈φ|U2(θ;μ;κ)[F〉 in the context of quantum mechanics, where U2(...A rotational parameter Rθ has been introduced to complex wavelet transform (CWT). The rotational CWT (RCWT) corresponds to a matrix element 〈φ|U2(θ;μ;κ)[F〉 in the context of quantum mechanics, where U2(θ;μ;κ) is a two-mode rotational displacing-squeezing operator in the 〈η| representation. Based on this, the Parseval theorem and the inversion formula of RCWT have been proved. The concise proof not only manifestly shows the merit of Dirac's representation theory but also leads to a new orthogonal property of complex mother wavelets in parameter space.展开更多
Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a techniqu...Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a technique that is based on wavelets for optimizing images taken in low-light.First,the V channel is created by mapping an image’s RGB channel to the HSV color space.Second,the acquired V channel is decomposed using the dual-tree complex wavelet transform(DT-CWT)in order to recover the concentrated information within its high and low-frequency subbands.Thirdly,an adaptive illumination boost technique is used to enhance the visibility of a low-frequency component.Simultaneously,anisotropic diffusion is used to mitigate the high-frequency component’s noise impact.To improve the results,the image is reconstructed using an inverse DT-CWT and then converted to RGB space using the newly calculated V.Additionally,images are white-balanced to remove color casts.Experiments demonstrate that the proposed approach significantly improves outcomes and outperforms previously reported methods in general.展开更多
We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet...We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.展开更多
A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the v...A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the variation due to the illumination and facial expression changes. By adopting spectral regression and complex fusion technologies respectively, two improved neighborhood preserving discriminant analysis feature extraction methods were proposed to capture the face manifold structures and locality discriminatory information. Extensive experiments have been made to compare the recognition performance of the proposed method with some popular dimensionality reduction methods on ORL and Yale face databases. The results verify the effectiveness of the proposed method.展开更多
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand...To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.展开更多
The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investiga...The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investigated based on their main directions. It is proved to be impossible to represent directional singularities optimally by a multi-resolution analysis (MRA) of L2(R2). Based on the above results, a new algorithm to construct Q-shift dual tree complex wavelet is proposed. By optimizing the main direction of parameterized wavelet filters, the difficulty in choosing stop-band frequency is overcome and the performances of the designed wavelet are improved too. Furthermore, results of image enhancement by various multi-scale methods are given, which show that the new designed Q-shift complex wavelet do offer significant improvement over the conventionally used wavelets. Direction sensitivity is an important index to the performance of 2D wavelets.展开更多
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar...Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.展开更多
基金supported by the National Natural Science Foundation of China (11071152, 11126343)the Natural Science Foundation of Guangdong Province(10151503101000025, S2011010004511)
文摘When approximation order is an odd positive integer, a simple method is given to construct compactly supported orthogonal symmetric complex scaling function with dilation factor 3. Two corresponding orthogonal wavelets, one is symmetric and the other is antisymmetric about origin, are constructed explicitly. Additionally, when approximation order is an even integer 2, we also give a method to construct compactly supported orthogonal symmetric complex that illustrate the corresponding results. wavelets. In the end, there are several examples
基金the National Natural Science Committee and Chinese Engineering Physics Institute Foundation(10576013)the National Nature Science Foundation of Henan Province of China(0611053200)+1 种基金the Natural Science Foundation for the Education Department of Henan Province of China(2006110001)the Nature Science Foundation of Henan Institute of Science and Technology(2006055)
文摘A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolation the article shows the affectivity and the superiority of this algorithm.
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
文摘The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy viscosity hypothesis as a result from transportation of mean momentum over distance by the large structures and arrives at a shear stress expression including the second order derivatives of the mean velocity.However,his expression greatly overestimates the shear stress.This implies that the flow particles are unlikely to have enough memory of the mean momentum over distance.By assuming the departure from eddy viscosity hypothesis as a result from transportation of the shear stress contained in smaller eddies over distance by the large structures,the present author has arrived at a new shear stress expression.The shear stress estimated so far is in good agreement with the experiments.
文摘On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized complex wavelet packet as multi-carrier modulation, a novel space-time block coded the MC-CDMA system based on complex wavelet packet and turbo coding is proposed, and the system bit error rate (BER) performance in the Rayleigh fading channel is investigated. The system can make full use of space-time block codes' transmit diversity and turbo codes' good ability against fading channel to improve the BER performance significantly, and it can also avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix (CP) by utilizing superior characteristics of the optimized complex wavelet packet. Simulation results show that the proposed space-time block coded MC-CDMA system based on the complex wavelet packet performs better than the conventional space-time block coded MC-CDMA (STBC-MC-CDMA) system, and slightly outperforms the STBC-MC-CDMA with CP. Moreover, the application of the space-time block coding technique concatenated with turbo codes strengthens the system ability to combat various interferences in fading channel further.
基金Provicial Natural Science Foundation of Shanxi,China(No.991051)Provincial Foundation for Homecoming Personnel from Study Abroad of Shanxi,China(No.194-101005)
文摘As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.
基金supported in part by the National Natural Science Foundation of China(Nos.61602257 and 61501260)the Natural Science Foundation of Jiangsu Province(No.BK20160904)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0776)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.16KJB520035)the NUPTSF(Nos.NY214039 and NY215033)
文摘In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts an image from the RGB color space to the HSV color space and decomposes the V-channel by dual-tree complex wavelet transform. Next, an improved local adaptive tone mapping method is applied to process the low frequency components of the image, and a soft threshold denoising algorithm is used to denoise the high frequency components of the image. Then, the V-channel is rebuilt and the contrast is adjusted using white balance method. Finally, the processed image is converted back into the RGB color space as the enhanced result. Experimental results show that the proposed method can effectively improve the performance in terms of contrast enhancement, noise reduction and color reproduction.
基金Beijing Municipal Natural Science Foundation of China (No. 3062012).
文摘Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.
基金supported by the National Key Technology Support Program(No.2014BAC13B06)the National Natural Science Foundation of China(Nos.51378414,51178376)+1 种基金the Program for Innovative Research Team in Shaanxi(No.2013KCT-13)the Program for New Century Excellent Talents in the University of Ministry of Education of China(No.NCET-12-1043)
文摘In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral p H. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at p H 5. At p H 5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation.Meanwhile, at p H 7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH)3. Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH〉 COO-〉NH deformation of amide Ⅱ〉 aliphatic hydroxyl C/OH at p H 5, and COO-〉aliphatic hydroxyl C/OH at p H 7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants.
文摘The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.
基金supported by a grant from the National High Technology Research and Development Program of China (863 Program) (No.2008AA04A107)supported by a grant from the Major Programs of Guangdong-Hongkong in the Key Domain (No.2009498B21)
文摘Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.
文摘Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.
文摘A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.
基金National Natural Science Foundation of China under Grant No.10647133the Research Foundation of the Education Department of Jiangxi Province under Grant No.[2007]22
文摘A rotational parameter Rθ has been introduced to complex wavelet transform (CWT). The rotational CWT (RCWT) corresponds to a matrix element 〈φ|U2(θ;μ;κ)[F〉 in the context of quantum mechanics, where U2(θ;μ;κ) is a two-mode rotational displacing-squeezing operator in the 〈η| representation. Based on this, the Parseval theorem and the inversion formula of RCWT have been proved. The concise proof not only manifestly shows the merit of Dirac's representation theory but also leads to a new orthogonal property of complex mother wavelets in parameter space.
基金Supported by Teaching Team Project of Hubei Provincial Department of Education(203201929203)the Natural Science Foundation of Hubei Province(2021CFB316)+1 种基金New Generation Information Technology Innovation Project Ministry of Education(20202020ITA05022)Hundreds of Schools Unite with Hundreds of Counties-University Serving Rural Revitalization Science and Technology Support Action Plan(BXLBX0847)。
文摘Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a technique that is based on wavelets for optimizing images taken in low-light.First,the V channel is created by mapping an image’s RGB channel to the HSV color space.Second,the acquired V channel is decomposed using the dual-tree complex wavelet transform(DT-CWT)in order to recover the concentrated information within its high and low-frequency subbands.Thirdly,an adaptive illumination boost technique is used to enhance the visibility of a low-frequency component.Simultaneously,anisotropic diffusion is used to mitigate the high-frequency component’s noise impact.To improve the results,the image is reconstructed using an inverse DT-CWT and then converted to RGB space using the newly calculated V.Additionally,images are white-balanced to remove color casts.Experiments demonstrate that the proposed approach significantly improves outcomes and outperforms previously reported methods in general.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056 and the Ph. D Tutoring Foundation of the Ministry of Education
文摘We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.
基金National Natural Science Foundation of China(No.61004088)Key Basic Research Foundation of Shanghai Municipal Science and Technology Commission,China(No.09JC1408000)
文摘A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the variation due to the illumination and facial expression changes. By adopting spectral regression and complex fusion technologies respectively, two improved neighborhood preserving discriminant analysis feature extraction methods were proposed to capture the face manifold structures and locality discriminatory information. Extensive experiments have been made to compare the recognition performance of the proposed method with some popular dimensionality reduction methods on ORL and Yale face databases. The results verify the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Grant No.11471004)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018SF-251)。
文摘To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.
基金Supported by National Natural Science Foundation of P.R.China (10171109)the Special Research Fund for Doctoral Program of Higher Education of P. R. China (20049998006)
文摘The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investigated based on their main directions. It is proved to be impossible to represent directional singularities optimally by a multi-resolution analysis (MRA) of L2(R2). Based on the above results, a new algorithm to construct Q-shift dual tree complex wavelet is proposed. By optimizing the main direction of parameterized wavelet filters, the difficulty in choosing stop-band frequency is overcome and the performances of the designed wavelet are improved too. Furthermore, results of image enhancement by various multi-scale methods are given, which show that the new designed Q-shift complex wavelet do offer significant improvement over the conventionally used wavelets. Direction sensitivity is an important index to the performance of 2D wavelets.
基金supported by the National Natural Science Foundation of China(No.11402112)the National Key Technology Support Program (No.2012BAA01B02)。
文摘Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.