期刊文献+
共找到13,446篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
1
作者 黄磊 任凯 +1 位作者 张焕萍 覃华松 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期101-107,共7页
Two-dimensional materials with novel mechanical and thermal properties are available for sensors,photodetectors,thermoelectric,crystal diode and flexible nanodevices.In this investigation,the mechanical and thermal pr... Two-dimensional materials with novel mechanical and thermal properties are available for sensors,photodetectors,thermoelectric,crystal diode and flexible nanodevices.In this investigation,the mechanical and thermal properties of pristine SiC and GeC are explored by molecular dynamics simulations.First,the fracture strength and fracture strain behaviors are addressed in the zigzag and armchair directions at 300 K.The excellent toughness of SiC and GeC is demonstrated by the maximal fracture strain of 0.43 and 0.47 in the zigzag direction,respectively.The temperature-tunable tensile strength of SiC and GeC is also investigated.Then,using non-equilibrium molecular dynamics(NEMD)calculations,the thermal performances of SiC and GeC are explored.In particular,the thermal conductivity of SiC and GeC shows a pronounced size dependence and reaches up to 85.67 W·m^(-1)-K^(-1)and 34.37 W·m^(-1)-K^(-1),respectively.The goal of our work is to provide a theoretical framework that can be used in the near future.This will enable us to design an efficient thermal management scheme for two-dimensional materials in electronics and optoelectronics. 展开更多
关键词 two-dimensional molecular dynamics mechanical property heat transport
原文传递
Moiré physics in two-dimensional materials:Novel quantum phases and electronic properties
2
作者 Zi-Yi Tian Si-Yu Li +2 位作者 Hai-Tao Zhou Yu-Hang Jiang Jin-Hai Mao 《Chinese Physics B》 2025年第2期2-17,共16页
Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehen... Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field. 展开更多
关键词 two-dimensional quantum material moirésuperlattice flat band strong correlations
原文传递
Intrinsic higher-order topological states in two-dimensional honeycomb quantum spin Hall insulators
3
作者 Sibin Lü Jun Hu 《Chinese Physics B》 2025年第11期499-504,共6页
The exploration of topological phases remains a cutting-edge research frontier,driven by their promising potential for next-generation electronic and quantum technologies.In this work,we employ first-principles calcul... The exploration of topological phases remains a cutting-edge research frontier,driven by their promising potential for next-generation electronic and quantum technologies.In this work,we employ first-principles calculations and tightbinding modeling to systematically investigate the topological properties of freestanding two-dimensional(2D)honeycomb Bi,HgTe,and Al_(2)O_(3)(0001)-supported HgTe.Remarkably,all three systems exhibit coexistence of intrinsic first-and higher-order topological insulator states,induced by spin-orbit coupling(SOC).These states manifest as topologically protected gapless edge states in one-dimensional(1D)nanoribbons and symmetry-related corner states in zero-dimensional(0D)nanoflakes.Furthermore,fractional electron charges may accumulate at the corners of armchair-edged nanoflakes.Among these materials,HgTe/Al_(2)O_(3)(0001)is particularly promising due to its experimentally feasible atomic configuration and low-energy corner states.Our findings highlight the importance of exploring higher-order topological phases in quantum spin Hall insulators and pave the way for new possibilities in device applications. 展开更多
关键词 higher-order topological insulators two-dimensional honeycomb lattice quantum spin Hall insulators
原文传递
Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport 被引量:2
4
作者 Yu Cao Haifeng Dong +1 位作者 Shaotao Pu Xueji Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4074-4081,共8页
Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of u... Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of ultrasmall 2D SiC quantum dots (QDs) has not been explored. Herein, we synthesize a type of monolayered 2D SiC QDs with advanced photoluminescence (PL) properties via a facile hydrothermal route. Their average size and thickness can be easily adjusted by altering the reaction time. The ultrasmall 2D SiC QDs exhibit a long fluorescence lifetime of 2.59 ps due to efficient quantum confinement. The applications of SiC QDs are demonstrated through labeling A549, HeLa, and NHDF cells and delivering agents for intracellular low-abundant microRNA (miRNA) detection. This advance in preparing photoluminescent SiC QDs is of great significance for broadening their potential in biomedical and optical applications. 展开更多
关键词 two-dimensional sic quantum dots cellular imaging intraceUular microRNA(miRNA) detection
原文传递
Contact Problem in Decagonal Two-Dimensional Quasicrystal 被引量:6
5
作者 周旺民 范天佑 《Journal of Beijing Institute of Technology》 EI CAS 2001年第1期51-55,共5页
As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of ... As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal. 展开更多
关键词 decagonal two-dimensional quasicrystal contact problem stress and displacement
在线阅读 下载PDF
Wearable Biodevices Based on Two-Dimensional Materials:From Flexible Sensors to Smart Integrated Systems 被引量:1
6
作者 Yingzhi Sun Weiyi He +3 位作者 Can Jiang Jing Li Jianli Liu Mingjie Liu 《Nano-Micro Letters》 2025年第5期207-255,共49页
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over... The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices. 展开更多
关键词 two-dimensional material Wearable biodevice Flexible sensor Smart integrated system Healthcare
在线阅读 下载PDF
Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium 被引量:6
7
作者 Tuoya SUN Junhong GUO E.PAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1077-1094,共18页
A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction be... A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2 D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional(3 D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories.Numerical examples are provided to display the effects of the quasiperiodic direction,length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,and medium elasticity on the vibration frequency and critical buckling load of the 2 D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.This feature is useful since the frequency and critical buckling load of the 2 D decagonal QCs as coating materials of plate structures can now be tuned as one desire. 展开更多
关键词 two-dimensional(2D)quasicrystal(QC) NANOPLATE VIBRATION BUCKLING elastic medium exact solution
在线阅读 下载PDF
General Solutions of Thermoelastic Plane Problems of Two-Dimensional Quasicrystals 被引量:2
8
作者 张亮亮 杨连枝 +1 位作者 余莲英 高阳 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期132-136,共5页
The thermoelastic plane problems of two-dimensional decagonal quasicrystals(QCs)are systematically investigated.By introducing a displacement function,the problem of thermoelastic plane problems can be simplified to a... The thermoelastic plane problems of two-dimensional decagonal quasicrystals(QCs)are systematically investigated.By introducing a displacement function,the problem of thermoelastic plane problems can be simplified to an eighth-order partial differential governing equation,and then general solutions are presented through an operator method.By virtue of the Almansi′s theorem,the general solutions are further established,and all expressions for the phonon,phason and thermal fields are described in terms of the potential functions.As an application of the general solution,for a steady point heat source in a semi-infinite quasicrystal plane,the closed form solutions are presented by four newly induced harmonic functions. 展开更多
关键词 two-dimensional quasicrystals THERMOELASTICITY general solutions point heat source
在线阅读 下载PDF
Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries
9
作者 CHEN Xiaoli LUO Zhihong +3 位作者 XIONG Yuzhu WANG Aihua CHEN Xue SHAO Jiaojing 《无机化学学报》 北大核心 2025年第8期1661-1671,共11页
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface... A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property. 展开更多
关键词 vermiculite nanosheets two-dimensional materials INTERLAYER shuttle effect lithium-sulfur batteries
在线阅读 下载PDF
Finite-Time Expected Present Value of Operating Costs until Ruin in a Two-Dimensional Risk Model with Periodic Observation
10
作者 TENG Ye XIE Jiayi ZHANG Zhimin 《应用概率统计》 北大核心 2025年第5期748-765,共18页
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m... This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem. 展开更多
关键词 two-dimensional risk model Fourier cosine expansion capital injection DIVIDEND
在线阅读 下载PDF
Guided Wave Propagation in Multilayered Two-dimensional Quasicrystal Plates with Imperfect Interfaces 被引量:1
11
作者 Xin Feng Liangliang Zhang +2 位作者 Zhiming Hu Han Zhang Yang Gao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第4期694-704,共11页
An analytical solution of the guided wave propagation in a multilayered twodimensional decagonal quasicrystal plate with imperfect interfaces is derived.According to the elastodynamic equations of quasicrystals(QCs),t... An analytical solution of the guided wave propagation in a multilayered twodimensional decagonal quasicrystal plate with imperfect interfaces is derived.According to the elastodynamic equations of quasicrystals(QCs),the wave propagating problem in the plate is converted into a linear control system by employing the state-vector approach,from which the general solutions of the extended displacements and stresses can be obtained,These solutions along the thickness direction are utilized to derive the propagator matrix which connects the physical variables on the lower and upper interfaces of each layer.The special spring model,which describes the discontinuity of the physical quantities across the interface,is introduced into the propagator relationship of the multilayered structure.The total propagator matrix can be used to propagate the solutions in each interface and each layer about the multilayered plate.In addition,the traction-free boundary condition on the top and bottom surfaces of the laminate is considered to obtain the dispersion equation of wave propagation,Finally,typical numerical examples are presented to illustrate the marked influences of stacking sequence and interface coeficients on the dispersion curves and displacement mode shapes of the QC laminates. 展开更多
关键词 two-dimensional QC materials Wave propagation Dispersion curve State vector approach Propagator matrix Imperfect interface
原文传递
Intrinsic two-dimensional multiferroicity in CrNCl_(2) monolayer 被引量:2
12
作者 Wei Shen Yuanhui Pan +3 位作者 Shengnan Shen Hui Li Siyuan Nie Jie Mei 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期570-574,共5页
Two-dimensional multiferroics,which simultaneously possess ferroelectricity and magnetism in a single phase,are well-known to possess great potential applications in nanoscale memories and spintronics.On the basis of ... Two-dimensional multiferroics,which simultaneously possess ferroelectricity and magnetism in a single phase,are well-known to possess great potential applications in nanoscale memories and spintronics.On the basis of first-principles calculations,a CrNCl_(2) monolayer is reported as an intrinsic multiferroic.The CrNCl_(2) has an antiferromagnetic ground state,with a N´eel temperature of about 88 K,and it exhibits an in-plane spontaneous polarization of 200 pC/m.The magnetic moments of CrNCl_(2) mainly come from the dxy orbital of the Cr cation,but the plane of the dxy orbital is perpendicular to the direction of the ferroelectric polarization,which hardly suppresses the occurrence of ferroelectricity.Therefore,the multiferroic exits in the CrNCl_(2).In addition,like CrNCl_(2),the CrNBr_(2) is an intrinsic multiferroic with antiferromagneticferroelectric ground state while CrNI_(2) is an intrinsic multiferroic with ferromagnetic-ferroelectric ground state.These findings enrich the multiferroics in the two-dimensional system and enable a wide range of applications in nanoscale devices. 展开更多
关键词 two-dimensional multiferroic CrNCl_(2)monolayer magnetism ferroelectricity
原文传递
MXenes-based separators with nanoconfined two-dimensional channels for high-performance lithium-sulfur battery
13
作者 Yi-Hui Zhao Shuai Li +6 位作者 Yu-Lu Huo Zhen Li Lan-Lan Hou Yong-Qiang Wen Xiao-Xian Zhao Jian-Jun Song Jing-Chong Liu 《Rare Metals》 2025年第5期2921-2944,共24页
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch... Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators. 展开更多
关键词 Lithium-sulfur battery MXenes SEPARATOR two-dimensional materials two-dimensional nanochannels
原文传递
Green's functions of two-dimensional piezoelectric quasicrystal in half-space and bimaterials 被引量:1
14
作者 Xiaoyu FU Xiang MU +2 位作者 Jinming ZHANG Liangliang ZHANG Yang GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期237-254,共18页
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti... In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree. 展开更多
关键词 Green’s function two-dimensional(2D)piezoelectric quasicrystal(PQC) Stroh formalism HALF-SPACE bimaterial
在线阅读 下载PDF
Two-Dimensional TiO_(2)Ultraviolet Filters for Sunscreens
15
作者 Ling QiuHui-Ming Cheng Ruoning Yang +10 位作者 Jiefu Chen Xiang Li Yaxin Zhang Baofu Ding Yujiangsheng Xu Shaoqiang Luo Shaohua Ma Xingang Ren Gang Liu Ling Qiu Hui-Ming Cheng 《Nano-Micro Letters》 2025年第12期108-119,共12页
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ... Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance. 展开更多
关键词 two-dimensional Titanium dioxide SUNSCREEN BIOSAFETY
在线阅读 下载PDF
Analysis of Leakage Effects on Outlet Flow Characteristics of a Two-dimensional Piston Pump
16
作者 Yu Huang Hanyu Xu +2 位作者 Wei Shao Chuan Ding Li Liu 《Chinese Journal of Mechanical Engineering》 2025年第3期545-557,共13页
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef... Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system. 展开更多
关键词 two-dimensional piston pump LEAKAGE Numerical simulation CLEARANCE
在线阅读 下载PDF
Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030
17
作者 Jing Guo Jianzhong Ma +18 位作者 Junli Liu Guanjie Huang Xiaoting Zhou Francesco Parrino Riccardo Ceccato Leonardo Palmisano Boon-Junn Ng Lutfi Kurnianditia Putri Huaxing Li Rongjie Li Gang Liu Yang Wang Nikolay Kornienko Shan-Shan Zhu Zhenwei Zhang Xiaoming Liu Nur Atika Nikma Dahlan Siang-Piao Chai Jianmin Ma 《Chinese Chemical Letters》 2025年第9期223-235,共13页
Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of... Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications. 展开更多
关键词 Environmental catalysis two-dimensional materials ELECTROCATALYSIS PHOTOCATALYSIS NANOMATERIALS
原文传递
Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
18
作者 Songyang Li Zhiguang Zhu +2 位作者 Youzhi Zhang Chengke Chen Xiaojun Hu 《Chinese Physics B》 2025年第5期596-607,共12页
It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament ch... It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament chemical vapor deposition setup,followed by annealing treatment under different temperatures at ambient pressure.The results indicate that when the annealing temperature increases from 700℃ to 1000℃,the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm.Meanwhile,the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase.As the annealing temperature continues to rise to 1100℃,a significant aggregation of Ta-containing compounds is observed in the samples,with no diamond structure detected.This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond.This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond. 展开更多
关键词 GRAPHENE two-dimensional diamond vacuum annealing phase transition
原文传递
Two-dimensional analysis of the interface state effect on current gain for a 4H-SiC bipolar junction transistor 被引量:2
19
作者 张有润 张波 +1 位作者 李肇基 邓小川 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第6期453-458,共6页
This paper studies two-dimensional analysis of the surface state effect on current gain for a 4H-SiC bipolar junction transistor (BJT). Simulation results indicate the mechanism of current gain degradation, which is... This paper studies two-dimensional analysis of the surface state effect on current gain for a 4H-SiC bipolar junction transistor (BJT). Simulation results indicate the mechanism of current gain degradation, which is surface Fermi level pinning leading to a strong downward bending of the energy bands to form the channel of surface electron recombination current. The experimental results are well-matched with the simulation, which is modeled by exponential distributions of the interface state density replacing the single interface state trap. Furthermore, the simulation reveals that the oxide quality of the base emitter junction interface is very important for 4H-SiC BJT performance. 展开更多
关键词 4H-sic bipolar junction transistor current gain interface state trap
原文传递
Exciton insulators in two-dimensional systems
20
作者 Huaiyuan Yang Xi Dai Xin-Zheng Li 《Chinese Physics B》 2025年第9期496-505,共10页
Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials,and in lowdimensional systems this is especially true due to the decrease of screening.In this review,we focus o... Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials,and in lowdimensional systems this is especially true due to the decrease of screening.In this review,we focus on one unique quantum phase induced by the electron-hole interaction in two-dimensional systems,known as“exciton insulators”(EIs).Although this phase of matter has been studied for more than half a century,suitable platforms for its stable realization remain scarce.We provide an overview of the strategies to realize EIs in accessible materials and structures,along with a discussion on some unique properties of EIs stemming from the band structures of these materials.Additionally,signatures in experiments to distinguish EIs are discussed. 展开更多
关键词 excitonic insulator two-dimensional materials
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部