With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propo...With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.展开更多
The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,tr...The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,traditional encryption algorithms demand considerable computational effort for real-time audio encryption.To address these challenges,this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps.The audio data is first shuffled using Tent map for the random permutation.The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map.Finally,the Exclusive OR(XOR)operation is applied between the generated key and the shuffled audio to yield the cipher audio.The experimental results prove that the proposed method surpassed the other techniques by encrypting two types of audio files,as mono and stereo audio files with large sizes up to 122 MB,different sample rates 22,050,44,100,48,000,and 96,000 for WAV and 44,100 sample rates for MP3 of size 11 MB.The results show high Mean Square Error(MSE),low Signal-to-Noise Ratio(SNR),spectral distortion,100%Number of Sample Change Rate(NSCR),high Percent Residual Deviation(PRD),low Correlation Coefficient(CC),large key space 2^(616),high sensitivity to a slight change in the secret key and that it can counter several attacks,namely brute force attack,statistical attack,differential attack,and noise attack.展开更多
In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext en...In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.展开更多
In this paper, definition and properties of logistic map along with orbit and bifurcation diagrams, Lyapunov exponent, and its histogram are considered. In order to expand chaotic region of Logistic map and make it su...In this paper, definition and properties of logistic map along with orbit and bifurcation diagrams, Lyapunov exponent, and its histogram are considered. In order to expand chaotic region of Logistic map and make it suitable for cryptography, two modified versions of Logistic map are proposed. In the First Modification of Logistic map (FML), vertical symmetry and transformation to the right are used. In the Second Modification of Logistic (SML) map, vertical and horizontal symmetry and transformation to the right are used. Sensitivity of FML to initial condition is less and sensitivity of SML map to initial condition is more than the others. The total chaotic range of SML is more than others. Histograms of Logistic map and SML map are identical. Chaotic range of SML map is fivefold of chaotic range of Logistic map. This property gave more key space for cryptographic purposes.展开更多
The fixed points in logistic mapping digital-flow chaos strange attractor arestudied in detail. When k=n in logistic equation, there exist no more than 2n fixed points, whichare deduced and proved theoretically. Three...The fixed points in logistic mapping digital-flow chaos strange attractor arestudied in detail. When k=n in logistic equation, there exist no more than 2n fixed points, whichare deduced and proved theoretically. Three corollaries about the fixed points of logistic mappingare proposed and proved respectively. These theorem and corollaries provide a theoretical basis forchoosing parameter of chaotic sequences in chaotic secure communication and chaotic digitalwatermarking. And they are testified by simulation.展开更多
The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied res...The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincar6 map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.展开更多
基金Project supported by the Shandong Province Natural Science Foundation(Grant Nos.ZR2023MF089,R2023QF036,and ZR2021MF073)the Industry-University-Research Collaborative Innovation Fund Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant Nos.2021CXY-13 and 2021CXY-14)+2 种基金the Major Scientific and Technological Innovation Projects of Shandong Province(Grant No.2020CXGC010901)the Talent Research Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023RCKY054)the Basic Research Projects of Science,Education and Industry Integration Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023PX081)。
文摘With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.
文摘The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,traditional encryption algorithms demand considerable computational effort for real-time audio encryption.To address these challenges,this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps.The audio data is first shuffled using Tent map for the random permutation.The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map.Finally,the Exclusive OR(XOR)operation is applied between the generated key and the shuffled audio to yield the cipher audio.The experimental results prove that the proposed method surpassed the other techniques by encrypting two types of audio files,as mono and stereo audio files with large sizes up to 122 MB,different sample rates 22,050,44,100,48,000,and 96,000 for WAV and 44,100 sample rates for MP3 of size 11 MB.The results show high Mean Square Error(MSE),low Signal-to-Noise Ratio(SNR),spectral distortion,100%Number of Sample Change Rate(NSCR),high Percent Residual Deviation(PRD),low Correlation Coefficient(CC),large key space 2^(616),high sensitivity to a slight change in the secret key and that it can counter several attacks,namely brute force attack,statistical attack,differential attack,and noise attack.
文摘In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.
文摘In this paper, definition and properties of logistic map along with orbit and bifurcation diagrams, Lyapunov exponent, and its histogram are considered. In order to expand chaotic region of Logistic map and make it suitable for cryptography, two modified versions of Logistic map are proposed. In the First Modification of Logistic map (FML), vertical symmetry and transformation to the right are used. In the Second Modification of Logistic (SML) map, vertical and horizontal symmetry and transformation to the right are used. Sensitivity of FML to initial condition is less and sensitivity of SML map to initial condition is more than the others. The total chaotic range of SML is more than others. Histograms of Logistic map and SML map are identical. Chaotic range of SML map is fivefold of chaotic range of Logistic map. This property gave more key space for cryptographic purposes.
基金This work was financially supported by the National Natural Science Foundation of China(No.69772014).]
文摘The fixed points in logistic mapping digital-flow chaos strange attractor arestudied in detail. When k=n in logistic equation, there exist no more than 2n fixed points, whichare deduced and proved theoretically. Three corollaries about the fixed points of logistic mappingare proposed and proved respectively. These theorem and corollaries provide a theoretical basis forchoosing parameter of chaotic sequences in chaotic secure communication and chaotic digitalwatermarking. And they are testified by simulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11202180,61273106,and 11171290)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2010292 and BK2010293)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJB510026)the National Training Programs of Innovation and Entrepreneurship for Undergraduates,China(Grant No.201210324009)the Training Programs of Practice and Innovation for Jiangsu College Students,China(Grant No.2012JSSPITP2378)
文摘The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincar6 map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.