It is the fifth part of the study published under the common umbrella of “The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma”. In Parts 1 - 4, we formulated a novel approach to thermodynamics of on...It is the fifth part of the study published under the common umbrella of “The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma”. In Parts 1 - 4, we formulated a novel approach to thermodynamics of one- and two-component heterogeneous systems completely or partially filled with a liquid substance in the plasma state. The approach is based on the use of Gibbs variational principles, and it enables efforts to address a variety of problems relating to the equilibrium and stability of such systems. In this fifth part, the results of Parts 1 - 4 are applied to the analysis of equilibrium configurations of a two-component charged plasma trapped between two parallel plates (the geometry often used in various applications).展开更多
In a previous paper[Phys.Rev.A95,060701(R)(2017)],we demonstrated that a new type of two-body interaction,which depends on the center of mass(CoM)momentum,can be realized for ultracold atoms via laser-modulated magnet...In a previous paper[Phys.Rev.A95,060701(R)(2017)],we demonstrated that a new type of two-body interaction,which depends on the center of mass(CoM)momentum,can be realized for ultracold atoms via laser-modulated magnetic Feshbach resonance(MFR).Further studies(e.g.L He et al,Phys.Rev.Lett.120,045302(2018))show that various interesting phenomena,such as Fulde–Ferrell superfluids,can be induced by scattering between ultracold atoms with this interaction.In this work we investigate the shallow bound states of two ultracold atoms with this type of interaction.We show that when the magnetic field B is below the MFR point B0,two shallow bound states can appear in this system.Namely,a'two-component dimer'or a dimer with pseudo-spin 1/2 can be formed by two atoms.Furthermore,the dispersion curve of the dimer may have either single or double minimums in the CoM momentum space.The latter case can be explained as a result from significant pseudo-spin-orbital coupling(SOC)effects.Our results show that the ultracold gases with CoM momentum dependent interaction may be a candidate for quantum simulations with ultracold two-component molecules,especially the molecule gases with SOC.展开更多
目的:观察Plasma等离子束联合强脉冲光治疗面部烧伤瘢痕的疗效及对瘢痕评分、疼痛程度的影响。方法:本次研究为前瞻性研究,采用随机数字表法将茂名市人民医院2024年3月至2024年8月期间收治的92例面部烧伤瘢痕患者分为对照组(接受强脉冲...目的:观察Plasma等离子束联合强脉冲光治疗面部烧伤瘢痕的疗效及对瘢痕评分、疼痛程度的影响。方法:本次研究为前瞻性研究,采用随机数字表法将茂名市人民医院2024年3月至2024年8月期间收治的92例面部烧伤瘢痕患者分为对照组(接受强脉冲光治疗,46例)和研究组(对照组的基础上接受Plasma等离子束治疗,46例)。对比两组疗效、相关量表评分、瘢痕恢复情况和不良反应发生率。结果:和对照组治疗后相比,研究组的临床总有效率和中文版简易烧伤健康量表(chinese version of the simplified burn health scale, BSHS-B)评分更高,温哥华瘢痕量表(vancouver scar scale, VSS)、视觉模拟疼痛量表(visual analogue scale, VAS)评分和瘢痕厚度、瘢痕血流灌注量更低(P<0.05)。两组不良反应发生率组间对比未见差异(P>0.05)。结论:应用Plasma离子束联合强脉冲光治疗面部烧伤瘢痕患者,可提高临床疗效,改善瘢痕厚度和血流灌注量,缓解瘢痕瘙痒及疼痛程度,安全性较好。展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether k...Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether key metabolite levels modified the GC primary prevention effects.Methods:Plasma metabolites associated with GC risk were identified through a case-control study.Bi-directional two-sample Mendelian randomization analyses were performed to determine potential causal relationships utilizing the Shandong Intervention Trial(SIT),a nested case-control study of the Mass Intervention Trial in Linqu,Shandong province(MITS),China,the UK Biobank,and the Finn Gen project.Results:A higher genetic risk score for plasma L-aspartic acid was significantly associated with an increased GC risk in the northern Chinese population(SIT:HR=1.26 per 1 SD change,95%CI:1.07±1.49;MITS:HR=1.07,95%CI:1.00±1.14)and an increased gastric adenocarcinoma risk in Finn Gen(OR=1.68,95%CI:1.16±2.45).Genetically predicted plasma L-aspartic acid levels also modified the GC primary prevention effects with the beneficial effect of Helicobacter pylori eradication notably observed among individuals within the top quartile of L-aspartic acid level(P-interaction=0.098)and the beneficial effect of garlic supplementation only for those within the lowest quartile of L-aspartic acid level(P-interaction=0.02).Conclusions:Elevated plasma L-aspartic acid levels significantly increased the risk of developing GC and modified the effects of GC primary prevention.Further studies from other populations are warranted to validate the modification effect of plasma L-aspartic acid levels on GC prevention and to elucidate the underlying mechanisms.展开更多
This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the poro...This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the porous MgO layer formed via plasma electrolytic oxidation(PEO).The AZ31 Mg alloy,initially coated with a PEO layer,underwent a dipping treatment in an ethanolic solution of 0.05 M 8HQ at 50℃ for 3 h.The results were compared with those from a different procedure where the PEO layer was subjected to a hydration reaction for 2 h at 90℃ before immersion in the 8HQ solution under the same conditions.The hydration treatment played a crucial role by converting MgO to Mg(OH)_(2),significantly enhancing the surface reactivity.This transformation introduced hydroxyl groups(−OH)on the surface,which facilitated donor-acceptor interactions with the electron-accepting sites on 8HQ molecules.The calculated binding energy(Ebinding)from DFT indicated that the interaction energy of 8HQ with Mg(OH)_(2) was lower compared to 8HQ with MgO,suggesting easier adsorption of 8HQ molecules on the hydrated surface.This,combined with the increased number of active sites and enhanced surface area,allowed for extensive surface coverage by 8HQ,leading to the formation of a stable,flake-like protective layer that sealed the majority of pores on the PEO layer.DFT calculations further suggested that the hydration treatment provided multiple active sites,enabling effective contact with 8HQ and rapid electron transfer,creating ideal conditions for charge-transfer-induced physical and chemical bonding.This study shows that hydration and 8HQ treatments significantly enhance the corrosion resistance of Mg alloys,highlighting their potential for advanced anticorrosive coatings.展开更多
BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,b...BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,biological,or artificial dressings.Biological and artificial dressings,such as hydrogels,are preferred for their biocompatibility.Platelet concentrates,such as platelet-rich plasma(PRP)and platelet-rich fibrin(PRF),stand out for accelerating tissue repair and minimizing risks of allergies and rejection.This study developed PRF and PRP-based dressings to treat skin wounds in an animal model,evaluating their functionality and efficiency in accelerating the tissue repair process.AIM To develop wound dressings based on platelet concentrates and evaluating their efficiency in treating skin wounds in Wistar rats.METHODS Wistar rats,both male and female,were subjected to the creation of a skin wound,distributed into groups(n=64/group),and treated with Carbopol(negative control);PRP+Carbopol;PRF+Carbopol;or PRF+CaCl_(2)+Carbopol,on days zero(D0),D3,D7,D14,and D21.PRP and PRF were obtained only from male rats.On D3,D7,D14,and D21,the wounds were analyzed for area,contraction rate,and histopathology of the tissue repair process.RESULTS The PRF-based dressing was more effective in accelerating wound closure early in the tissue repair process(up to D7),while PRF+CaCl_(2) seemed to delay the process,as wound closure was not complete by D21.Regarding macroscopic parameters,animals treated with PRF+CaCl_(2) showed significantly more crusting(necrosis)early in the repair process(D3).In terms of histopathological parameters,the PRF group exhibited significant collagenization at the later stages of the repair process(D14 and D21).By D21,fibroblast proliferation and inflammatory infiltration were higher in the PRP group.Animals treated with PRF+CaCl_(2) experienced a more pronounced inflammatory response up to D7,which diminished from D14 onwards.CONCLUSION The PRF-based dressing was effective in accelerating the closure of cutaneous wounds in Wistar rats early in the process and in aiding tissue repair at the later stages.展开更多
The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh...The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.展开更多
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa...This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.展开更多
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency...Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.展开更多
Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ...Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
A new perspective was reported to design the self-densified plasma electrolytic oxidation(SDF-PEO)coat-ings on magnesium alloys based on the dissolution-ionization-diffusion-deposition(DIDD)model.The main consideratio...A new perspective was reported to design the self-densified plasma electrolytic oxidation(SDF-PEO)coat-ings on magnesium alloys based on the dissolution-ionization-diffusion-deposition(DIDD)model.The main considerations of the new PEO electrolyte include the establishment of a thermodynamics diagram,the construction of a liquid-solid sintering system and the regulation of plasma sparkling kinetics.The SDF-PEO coating exhibited a homogeneous and dense microstructure,superior corrosion resistance and good technological adaptability.This work offers a novel theory to design surface treatment solutions with superior corrosion resistance and promising application prospects.展开更多
The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins ...The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins is crucial for cell survival.PM damage induces membrane rupture and stimulates an immune response.However,damage resulting from regulated cell death processes,including pyroptosis,ferroptosis,and necroptosis,cannot be repaired by simple sealing mechanisms and thus,requires specialized repair machinery.Recent research has identified a PM repair mechanism of regulated cell death-related injury,mediated by the endosomal sorting complexes required for transport(ESCRT)machinery.Here,we review recent progress in elucidating the ESCRT machinery-mediated repair mechanism of PM injury,with particular focus on processes related to regulated cell death.This overview,along with continued research in this field,may provide novel insights into therapeutic targets for diseases associated with dysregulation of regulated cell death pathways.展开更多
The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of back...The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of background ions is used to account for the interaction of the charged dust particles.The simulation results are compared with the existing theories including quasilocalized charge approximation and randomphase approximation.In the weak magnetization regime,the wave spectra obtained from Yukawa simulation and modified Yukawa simulation basically are the same.In the strong magnetization regime,the magnetization of background ions and temperature ratio of background electrons to background ions play effects on the wave spectra of the system,particularly for the strongly coupled state.The dust acoustic waves in the weakly coupled state basically are not influenced by the magnetization of background ions.展开更多
For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is...For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is found that md/mi,nd/ne0 and Q/e contribute to the coupling strength of the system,and Te/Ti contributes to the shielding cloud surrounding the charged dust particles.Further analysis shows that the modified Yukawa potential depends on Te/Ti.The consequent structure changes of the system are discussed based on the Langevin dynamics simulation.It is found that the variation of Ham-iltonian contributes to the equilibrium structure of the system.展开更多
This article provides a short review on the importance of the detailed analysis of a Langmuir probe I-V trace in a multi-Maxwellian plasma,and discuss proper procedures analyzing Langmuir probe I-V traces in bi-Maxwel...This article provides a short review on the importance of the detailed analysis of a Langmuir probe I-V trace in a multi-Maxwellian plasma,and discuss proper procedures analyzing Langmuir probe I-V traces in bi-Maxwellian and triple-Maxwellian Electron Energy Distribution Function(EEDF)plasmas.Discus⁃sion and demonstration of procedures include the treatment of the ion saturation current,electron saturation cur⁃rent,space-charge effects on the I-V trace,and most importantly how to properly isolate and fit for each electron group present in an I-V trace reflecting a mult-Maxwellian EEDF,as well as how having a multi-Maxwellian EEDF affects the procedures of treating the ion and electron saturation currents.Shortcomings of common improp⁃er procedures are discussed and demonstrated with simulated I-V traces to show how these procedures gives false measurements.展开更多
The high-entropy alloy composite coatings AlCu_(2)Ti(NiCr)_(2)-(WC)_(x)(x denotes powder feeding speeds,including 0,25,50,and 75 r/min)were prepared by plasma cladding using a hybrid mode of AlCu_(2)(NiCr)_(2)Ti cable...The high-entropy alloy composite coatings AlCu_(2)Ti(NiCr)_(2)-(WC)_(x)(x denotes powder feeding speeds,including 0,25,50,and 75 r/min)were prepared by plasma cladding using a hybrid mode of AlCu_(2)(NiCr)_(2)Ti cable-type welding wire(CWW)and tungsten carbide(WC)powder.The effect of WC powder feeding speed on the microstructure,hardness,and wear properties of the prepared coatings was investigated.The results show that the coatings consist of body-centered cubic main phases and face-centered cubic secondary phases,with carbide reinforcement phases formed due to the addition of WC.The hardness and wear resistance of the coatings are significantly improved compared to the TC11 substrate.When WC powder feeding speed is set at 50 r/min,the coating exhibits optimal wear resistance,with a minimum volume wear rate of 8.5869×10^(-6)mm^(3)·N^(-1)·m^(-1),greatly improving the wear properties of TC11 surface.The coincident CWW-powder plasma cladding provides a viable method for the preparation of highentropy alloy composite coatings with enhanced wear resistance.展开更多
Organosilicone thin films were prepared through plasma polymerization(pp)in a plasma enhance chemical vapour deposition(PECVD)system,utilizing hexamethyldisilazane(HMDSN)as a monomer precursor,at varying distances(25 ...Organosilicone thin films were prepared through plasma polymerization(pp)in a plasma enhance chemical vapour deposition(PECVD)system,utilizing hexamethyldisilazane(HMDSN)as a monomer precursor,at varying distances(25 mm,35 mm,45 mm,55 mm,and 65 mm)from the plasma source to the substrate.Research has examined how the distance between the substrate and plasma source impacts the properties of thin films,including their thickness,surface morphology,and photoluminescence(PL).It was discovered that as the distance increased,both film thickness and PL intensity also increased.Additionally,the film was observed to be more uniform and smoother when deposited 45 mm below the plasma source.展开更多
Cold atmospheric plasmas are widely used in biomedicine.Although direct plasma treatments of wounds have been demon-strated,there are still obstacles hampering further clinical adoption,for example,the limited treatme...Cold atmospheric plasmas are widely used in biomedicine.Although direct plasma treatments of wounds have been demon-strated,there are still obstacles hampering further clinical adoption,for example,the limited treatment area,inconsistent ac-tions and risk of thermal injury.In this respect,plasma-activated air(PAA)is proposed and demonstrated for infected wounds treatment as an alternative to the conventional direct plasma treatment.The combination of gliding arc discharge reactor and dielectric barrier discharge reactor produces highly bioactive PAA.In in vitro sterilisation of Staphylococcus aureus,approxi-mately 9-log reduction is achieved after the PAA treatment for 6 min.Bovine serum albumin is added to the S.aureus sus-pension to further simulate the wound exudate to accomplish inactivation of approximately 3-log reduction after 10 min.In vivo experiments show that the PAA treatment of infected wounds significantly reduces the bacterial load and improves the healing rate,revealing an optimal treatment time of 3 min/day.The immunohistochemical and blood biochemical analyses show that the PAA-3 min treatment enhances wound healing by inhibiting the tissue inflammatory response and inducing growth factor production without showing evident systemic toxicity.In conclusion,PAA holds great clinical promise as a safe and effective wound-healing strategy.展开更多
文摘It is the fifth part of the study published under the common umbrella of “The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma”. In Parts 1 - 4, we formulated a novel approach to thermodynamics of one- and two-component heterogeneous systems completely or partially filled with a liquid substance in the plasma state. The approach is based on the use of Gibbs variational principles, and it enables efforts to address a variety of problems relating to the equilibrium and stability of such systems. In this fifth part, the results of Parts 1 - 4 are applied to the analysis of equilibrium configurations of a two-component charged plasma trapped between two parallel plates (the geometry often used in various applications).
基金supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405300)the National Safety Academic Fund (Grant No. U1930201)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China (22XNH100)
文摘In a previous paper[Phys.Rev.A95,060701(R)(2017)],we demonstrated that a new type of two-body interaction,which depends on the center of mass(CoM)momentum,can be realized for ultracold atoms via laser-modulated magnetic Feshbach resonance(MFR).Further studies(e.g.L He et al,Phys.Rev.Lett.120,045302(2018))show that various interesting phenomena,such as Fulde–Ferrell superfluids,can be induced by scattering between ultracold atoms with this interaction.In this work we investigate the shallow bound states of two ultracold atoms with this type of interaction.We show that when the magnetic field B is below the MFR point B0,two shallow bound states can appear in this system.Namely,a'two-component dimer'or a dimer with pseudo-spin 1/2 can be formed by two atoms.Furthermore,the dispersion curve of the dimer may have either single or double minimums in the CoM momentum space.The latter case can be explained as a result from significant pseudo-spin-orbital coupling(SOC)effects.Our results show that the ultracold gases with CoM momentum dependent interaction may be a candidate for quantum simulations with ultracold two-component molecules,especially the molecule gases with SOC.
文摘目的:观察Plasma等离子束联合强脉冲光治疗面部烧伤瘢痕的疗效及对瘢痕评分、疼痛程度的影响。方法:本次研究为前瞻性研究,采用随机数字表法将茂名市人民医院2024年3月至2024年8月期间收治的92例面部烧伤瘢痕患者分为对照组(接受强脉冲光治疗,46例)和研究组(对照组的基础上接受Plasma等离子束治疗,46例)。对比两组疗效、相关量表评分、瘢痕恢复情况和不良反应发生率。结果:和对照组治疗后相比,研究组的临床总有效率和中文版简易烧伤健康量表(chinese version of the simplified burn health scale, BSHS-B)评分更高,温哥华瘢痕量表(vancouver scar scale, VSS)、视觉模拟疼痛量表(visual analogue scale, VAS)评分和瘢痕厚度、瘢痕血流灌注量更低(P<0.05)。两组不良反应发生率组间对比未见差异(P>0.05)。结论:应用Plasma离子束联合强脉冲光治疗面部烧伤瘢痕患者,可提高临床疗效,改善瘢痕厚度和血流灌注量,缓解瘢痕瘙痒及疼痛程度,安全性较好。
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金funded by the National Natural Science Foundation of China(No.82273704)Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0501400-2023ZD0501402)+4 种基金Beijing Hospitals Authority’s Ascent Plan(DFL20241102)Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support(No.ZLRK202325)China Postdoctoral Science Foundation(2024M760152)Peking University Medicine Fund for World’s Leading Discipline or Discipline Cluster Development(No.BMU2022XKQ004)Science Foundation of Peking University Cancer Hospital(Nos.BJCH2024BJ02,XKFZ2410,BJCH2025CZ04,and 2022-27)。
文摘Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether key metabolite levels modified the GC primary prevention effects.Methods:Plasma metabolites associated with GC risk were identified through a case-control study.Bi-directional two-sample Mendelian randomization analyses were performed to determine potential causal relationships utilizing the Shandong Intervention Trial(SIT),a nested case-control study of the Mass Intervention Trial in Linqu,Shandong province(MITS),China,the UK Biobank,and the Finn Gen project.Results:A higher genetic risk score for plasma L-aspartic acid was significantly associated with an increased GC risk in the northern Chinese population(SIT:HR=1.26 per 1 SD change,95%CI:1.07±1.49;MITS:HR=1.07,95%CI:1.00±1.14)and an increased gastric adenocarcinoma risk in Finn Gen(OR=1.68,95%CI:1.16±2.45).Genetically predicted plasma L-aspartic acid levels also modified the GC primary prevention effects with the beneficial effect of Helicobacter pylori eradication notably observed among individuals within the top quartile of L-aspartic acid level(P-interaction=0.098)and the beneficial effect of garlic supplementation only for those within the lowest quartile of L-aspartic acid level(P-interaction=0.02).Conclusions:Elevated plasma L-aspartic acid levels significantly increased the risk of developing GC and modified the effects of GC primary prevention.Further studies from other populations are warranted to validate the modification effect of plasma L-aspartic acid levels on GC prevention and to elucidate the underlying mechanisms.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the porous MgO layer formed via plasma electrolytic oxidation(PEO).The AZ31 Mg alloy,initially coated with a PEO layer,underwent a dipping treatment in an ethanolic solution of 0.05 M 8HQ at 50℃ for 3 h.The results were compared with those from a different procedure where the PEO layer was subjected to a hydration reaction for 2 h at 90℃ before immersion in the 8HQ solution under the same conditions.The hydration treatment played a crucial role by converting MgO to Mg(OH)_(2),significantly enhancing the surface reactivity.This transformation introduced hydroxyl groups(−OH)on the surface,which facilitated donor-acceptor interactions with the electron-accepting sites on 8HQ molecules.The calculated binding energy(Ebinding)from DFT indicated that the interaction energy of 8HQ with Mg(OH)_(2) was lower compared to 8HQ with MgO,suggesting easier adsorption of 8HQ molecules on the hydrated surface.This,combined with the increased number of active sites and enhanced surface area,allowed for extensive surface coverage by 8HQ,leading to the formation of a stable,flake-like protective layer that sealed the majority of pores on the PEO layer.DFT calculations further suggested that the hydration treatment provided multiple active sites,enabling effective contact with 8HQ and rapid electron transfer,creating ideal conditions for charge-transfer-induced physical and chemical bonding.This study shows that hydration and 8HQ treatments significantly enhance the corrosion resistance of Mg alloys,highlighting their potential for advanced anticorrosive coatings.
文摘BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,biological,or artificial dressings.Biological and artificial dressings,such as hydrogels,are preferred for their biocompatibility.Platelet concentrates,such as platelet-rich plasma(PRP)and platelet-rich fibrin(PRF),stand out for accelerating tissue repair and minimizing risks of allergies and rejection.This study developed PRF and PRP-based dressings to treat skin wounds in an animal model,evaluating their functionality and efficiency in accelerating the tissue repair process.AIM To develop wound dressings based on platelet concentrates and evaluating their efficiency in treating skin wounds in Wistar rats.METHODS Wistar rats,both male and female,were subjected to the creation of a skin wound,distributed into groups(n=64/group),and treated with Carbopol(negative control);PRP+Carbopol;PRF+Carbopol;or PRF+CaCl_(2)+Carbopol,on days zero(D0),D3,D7,D14,and D21.PRP and PRF were obtained only from male rats.On D3,D7,D14,and D21,the wounds were analyzed for area,contraction rate,and histopathology of the tissue repair process.RESULTS The PRF-based dressing was more effective in accelerating wound closure early in the tissue repair process(up to D7),while PRF+CaCl_(2) seemed to delay the process,as wound closure was not complete by D21.Regarding macroscopic parameters,animals treated with PRF+CaCl_(2) showed significantly more crusting(necrosis)early in the repair process(D3).In terms of histopathological parameters,the PRF group exhibited significant collagenization at the later stages of the repair process(D14 and D21).By D21,fibroblast proliferation and inflammatory infiltration were higher in the PRP group.Animals treated with PRF+CaCl_(2) experienced a more pronounced inflammatory response up to D7,which diminished from D14 onwards.CONCLUSION The PRF-based dressing was effective in accelerating the closure of cutaneous wounds in Wistar rats early in the process and in aiding tissue repair at the later stages.
基金the National Natural Science Founda-tion of China(NSFC,Grant No.42174181)and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDJ-SSW-DQC010).
文摘The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.
基金JSPS KAKENHI Grant Number16H06286 supports global GNSS ionospheric maps (TEC,ROTI,and detrended TEC maps) developed by the Institute for SpaceEarth Environmental Research (ISEE) of Nagoya Universitysupport of the 2024 JASSO Follow-up Research Fellowship Program for a 90-day visiting research at the Institute for Space-Earth Environmental Research (ISEE),Nagoya University+3 种基金the support received from Telkom University under the“Skema Penelitian Terapan Periode I Tahun Anggaran 2024”the Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation (No:092/SAM3/TE-DEK/2021)the National Institute of Information and Communications Technology (NICT) International Exchange Program 2024-2025(No.2024-007)support for a one-year visiting research at Hokkaido University
文摘This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.
基金supported by the National Natural Science Foundation of China(Nos.52275299,52105313)R&D Program of Beijing Municipal Education Commission(No.KM202210005036)+1 种基金Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.
基金supported by the National Natural Science Foundation of China (NSFC) through Grant Number 42074193
文摘Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.
基金supported by the National Natural Sci-ence Foundation of China(Nos.U21A2045 and 52201066)the Liaoning Revitalization Talents Program(No.XLYC2002071).
文摘A new perspective was reported to design the self-densified plasma electrolytic oxidation(SDF-PEO)coat-ings on magnesium alloys based on the dissolution-ionization-diffusion-deposition(DIDD)model.The main considerations of the new PEO electrolyte include the establishment of a thermodynamics diagram,the construction of a liquid-solid sintering system and the regulation of plasma sparkling kinetics.The SDF-PEO coating exhibited a homogeneous and dense microstructure,superior corrosion resistance and good technological adaptability.This work offers a novel theory to design surface treatment solutions with superior corrosion resistance and promising application prospects.
文摘The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins is crucial for cell survival.PM damage induces membrane rupture and stimulates an immune response.However,damage resulting from regulated cell death processes,including pyroptosis,ferroptosis,and necroptosis,cannot be repaired by simple sealing mechanisms and thus,requires specialized repair machinery.Recent research has identified a PM repair mechanism of regulated cell death-related injury,mediated by the endosomal sorting complexes required for transport(ESCRT)machinery.Here,we review recent progress in elucidating the ESCRT machinery-mediated repair mechanism of PM injury,with particular focus on processes related to regulated cell death.This overview,along with continued research in this field,may provide novel insights into therapeutic targets for diseases associated with dysregulation of regulated cell death pathways.
基金Supported by National Natural Science Foundation of China(12275354,11805272)College Students'Innovative Entrepreneurial Training Plan Program of Civil Aviation University of China(202210059079)。
文摘The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of background ions is used to account for the interaction of the charged dust particles.The simulation results are compared with the existing theories including quasilocalized charge approximation and randomphase approximation.In the weak magnetization regime,the wave spectra obtained from Yukawa simulation and modified Yukawa simulation basically are the same.In the strong magnetization regime,the magnetization of background ions and temperature ratio of background electrons to background ions play effects on the wave spectra of the system,particularly for the strongly coupled state.The dust acoustic waves in the weakly coupled state basically are not influenced by the magnetization of background ions.
基金Supported by National Natural Science Foundation of China(12275354,11805272)the College Students'Innovative Entrepreneurial Training Plan Program of Civil Aviation University of China(202210059080)。
文摘For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is found that md/mi,nd/ne0 and Q/e contribute to the coupling strength of the system,and Te/Ti contributes to the shielding cloud surrounding the charged dust particles.Further analysis shows that the modified Yukawa potential depends on Te/Ti.The consequent structure changes of the system are discussed based on the Langevin dynamics simulation.It is found that the variation of Ham-iltonian contributes to the equilibrium structure of the system.
文摘This article provides a short review on the importance of the detailed analysis of a Langmuir probe I-V trace in a multi-Maxwellian plasma,and discuss proper procedures analyzing Langmuir probe I-V traces in bi-Maxwellian and triple-Maxwellian Electron Energy Distribution Function(EEDF)plasmas.Discus⁃sion and demonstration of procedures include the treatment of the ion saturation current,electron saturation cur⁃rent,space-charge effects on the I-V trace,and most importantly how to properly isolate and fit for each electron group present in an I-V trace reflecting a mult-Maxwellian EEDF,as well as how having a multi-Maxwellian EEDF affects the procedures of treating the ion and electron saturation currents.Shortcomings of common improp⁃er procedures are discussed and demonstrated with simulated I-V traces to show how these procedures gives false measurements.
基金National Natural Science Foundation of China(51764038)Gansu Science and Technology Planning Project(2022JR5RA314,22YF7WA151,22YF7GA138,23CXGA0151)+1 种基金Gansu Provincial Department of Education:Industrial Support Plan Project(2022CYZC-31)Gansu Provincial Association of Science and Technology Innovation Driving Force Project(GXH20230817-10)。
文摘The high-entropy alloy composite coatings AlCu_(2)Ti(NiCr)_(2)-(WC)_(x)(x denotes powder feeding speeds,including 0,25,50,and 75 r/min)were prepared by plasma cladding using a hybrid mode of AlCu_(2)(NiCr)_(2)Ti cable-type welding wire(CWW)and tungsten carbide(WC)powder.The effect of WC powder feeding speed on the microstructure,hardness,and wear properties of the prepared coatings was investigated.The results show that the coatings consist of body-centered cubic main phases and face-centered cubic secondary phases,with carbide reinforcement phases formed due to the addition of WC.The hardness and wear resistance of the coatings are significantly improved compared to the TC11 substrate.When WC powder feeding speed is set at 50 r/min,the coating exhibits optimal wear resistance,with a minimum volume wear rate of 8.5869×10^(-6)mm^(3)·N^(-1)·m^(-1),greatly improving the wear properties of TC11 surface.The coincident CWW-powder plasma cladding provides a viable method for the preparation of highentropy alloy composite coatings with enhanced wear resistance.
基金the AECS for its financial support of this study
文摘Organosilicone thin films were prepared through plasma polymerization(pp)in a plasma enhance chemical vapour deposition(PECVD)system,utilizing hexamethyldisilazane(HMDSN)as a monomer precursor,at varying distances(25 mm,35 mm,45 mm,55 mm,and 65 mm)from the plasma source to the substrate.Research has examined how the distance between the substrate and plasma source impacts the properties of thin films,including their thickness,surface morphology,and photoluminescence(PL).It was discovered that as the distance increased,both film thickness and PL intensity also increased.Additionally,the film was observed to be more uniform and smoother when deposited 45 mm below the plasma source.
基金supported by National Natural Science Foundation of China(Grant 52277231)City University of Hong Kong Donation Research(Grant DON-RMG 9229021)Hong Kong PDFS—RGC Postdoctoral Fellowship Scheme(PDFS2122-1S08).
文摘Cold atmospheric plasmas are widely used in biomedicine.Although direct plasma treatments of wounds have been demon-strated,there are still obstacles hampering further clinical adoption,for example,the limited treatment area,inconsistent ac-tions and risk of thermal injury.In this respect,plasma-activated air(PAA)is proposed and demonstrated for infected wounds treatment as an alternative to the conventional direct plasma treatment.The combination of gliding arc discharge reactor and dielectric barrier discharge reactor produces highly bioactive PAA.In in vitro sterilisation of Staphylococcus aureus,approxi-mately 9-log reduction is achieved after the PAA treatment for 6 min.Bovine serum albumin is added to the S.aureus sus-pension to further simulate the wound exudate to accomplish inactivation of approximately 3-log reduction after 10 min.In vivo experiments show that the PAA treatment of infected wounds significantly reduces the bacterial load and improves the healing rate,revealing an optimal treatment time of 3 min/day.The immunohistochemical and blood biochemical analyses show that the PAA-3 min treatment enhances wound healing by inhibiting the tissue inflammatory response and inducing growth factor production without showing evident systemic toxicity.In conclusion,PAA holds great clinical promise as a safe and effective wound-healing strategy.