Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn...Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction.展开更多
Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fib...Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.展开更多
Sugarcane bagasse(SCB)is a promising natural fiber for bio-based composites,but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance.While chemical treatments h...Sugarcane bagasse(SCB)is a promising natural fiber for bio-based composites,but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance.While chemical treatments have been extensively explored,limited research has addressed how thermal treatment alone alters the surface properties and reinforcing behavior of SCB fibers.This study aims to fill that gap by investigating the effects of heat treatment on SCB fiber structure and its performance in starch/poly(vinyl alcohol)(PVA)composites.Characterization techniques including Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM)were employed to analyze changes in fiber morphology,surface chemistry,and crystallinity.Mechanical properties were assessed via tensile,flexural,and impact testing,and moisture absorption was also evaluated.Composites reinforced with SCB fibers treated at 200○C exhibited significantly superior mechanical properties compared to those prepared with untreated or differently treated fibers.The tensile,flexural,and impact performance of the composites were 15.13,19.37 MPa,and 7.28 J/m,respectively.Composites treated at this temperature also retained better mechanical properties after exposure to humidity.These findings demonstrate that heat treatment is a simple and sustainable method to improve the durability and mechanical performance of nature fiber-reinforced composites,expanding their potential for environmentally friendly material applications.展开更多
The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths ...The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths have attracted attention in the field of composites due to their large design space. The major challenge in adopting nonlinear fiber paths is obtaining a fiber path function within the design space that is easily computable and efficiently yields the highest buckling load of a VS plate. In this investigation, an innovative nonlinear function was proposed to describe the fiber orientation by integrating a center fiber angle into the conventional linear function. The parameters of the nonlinear function can directly represent the fiber angles at a fixed position. This novel approach has promising potential for improving the optimal efficiency of fiber paths because the linear and nonlinear functions are simplified with two identical path parameters. Furthermore, a multilevel optimization method was developed by combining finite element analysis(FEA) with an adaptive radial basis function(RBF) surrogate model, and it was found that the number of FEA cases could be reduced by iteratively inheriting training points. The integration of this nonlinear function with a surrogate model is a significant advancement in the structural optimization of composites. Subsequently, the optimal linear and nonlinear fiber paths were computed to maximize the buckling load of VS plates. The FEA results show that the computational efficiency was greatly improved by the proposed nonlinear function and optimization method. The buckling resistance could be enhanced by the nonlinear fiber path, and the reinforcement mechanism was the redistribution and reduction of in-plane compressive stress.展开更多
3D printing has emerged as an advanced manufacturing technique for carbon fiber reinforced composites and relevant structures that endure significant dynamic loads in engineering applications.The dynamic behavior of t...3D printing has emerged as an advanced manufacturing technique for carbon fiber reinforced composites and relevant structures that endure significant dynamic loads in engineering applications.The dynamic behavior of these materials,primarily influenced by the dynamic fiber pullout interface strength necessitates investigation into the rate-dependent fiber/matrix interfacial strength.This study modifies a Hopkinson tension bar to conduct dynamic pullout tests on a single fiber bundle,utilizing a low-impedance bar and an in-situ calibrated semiconductor strain gauge to capture weak stress signals.Stress equilibrium analyses are performed to validate the transient dynamic loading on single fiber bundle specimens.The results reveal that the fiber/matrix interfacial strength is rate-dependent,increasing with the loading rate,while remaining unaffected by the embedded length.Fracture microstructural analyses show minimal fiber pullout due to high interfacial stresses induced by longer embedded lengths.Lastly,suggestions are made for the efficient design of fiber pullout experiments.展开更多
Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the inte...Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the interface of basalt fiber(BF)/poly(vinyl chloride)(PVC)composites.polystyrene/poly(butyl acrylate)(PS/PBA)@silica JPs were synthesized by seed emulsion polymerization and three different sizing agents were prepared for BF sizing treatment.JPs with organic soft sphere and inorganic hard hemisphere enhanced the interfaces through their amphiphilicity,chemical bonding and mechanical interlock.The mechanical properties of composite with JPs sizing treated BFs performed better when there was one JPs layer modified on the interface.According to the intermitting bonding and gradient modulus theory,JPs patterned interfaces are ideal transition layers between high modulus BF and low modulus PVC.展开更多
Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechani...Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechanical properties of carbon fibers, and therefore affect the overall performance of pultruded composites. This study systematically investigated the influence of PAN precursor properties on the degree of graphitization, surface morphology and mechanical properties of carbon fibers by regulating the molecular weight distribution, stretching ratio and impurity content of PAN precursor, and analyzed the mechanism of action of carbon fiber properties on the interfacial bonding strength and tensile/ bending properties of composites in combination with the pultrusion process. The results showed that when the filament stretchability was increased to 4.5 times, the axial orientation of carbon fibers increased by 18% and the tensile strength reached 520 MPa;Filaments with impurity content below 0.3% increase carbon fiber yield by 5.2% and interlaminar shear strength of composites by 23%. This study provides a theoretical basis for raw material screening and process optimization of high-performance carbon fibers and their composites.展开更多
A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of sho...A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions.展开更多
Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkano...Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkanoate(PHA),when mixed with natural fibers such as kenaf,hemp,and jute,provide an environmentally acceptable alternative to traditional fossil-based materials.This article examines current research on developments in the integration of biopolymers with natural fibers,with a focus on enhancing mechanical,thermal,and sustainability.Innovative approaches to surface treatment of natural fibers,such as biological and chemical treatments,have demonstrated enhanced adhesion with biopolymer matrices,increasing attributes such as tensile strength and rigidity.Furthermore,nano filling technologies such as nanocellulose and nanoparticles have improved the attributes of multifunctional composites,including heat conductivity and moisture resistance.According to performance analysis,biopolymernatural fiber-based composites may compete with synthetic composites in construction applications,particularly in lightweight buildings and automobiles.However,significant issues such as degradation in humid settings and longtermendurancemust be solved.To support a circular economy,solutions involve the development ofmoisture-resistant polymers and composite recycling technology.This article examines current advancements and identifies problems and opportunities to provide insight into the future direction of more inventive and sustainable biocomposites,and also the dangers they pose to green technology and industrial materials.These findings are significant in terms of the development of building materials which are not only competitive but also contribute to global sustainability.展开更多
This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network(ANN)to predict water uptake percentage fromexperimental parameters.Com...This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network(ANN)to predict water uptake percentage fromexperimental parameters.Composite laminates are fabricated with varying glass fiber(40-60 wt.%)and nanoclay(0-4 wt.%)contents.Water absorption is evaluated for 70 days of immersion following ASTM D570-98 standards.The inclusion of nanoclay reduces water uptake by creating a tortuous path for moisture diffusion due to its high aspect ratio and platelet morphology,thereby enhancing the composite’s barrier properties.The ANN model is developed with a 3-4-1 feedforward structure and learned through the Levenberg-Marquardt algorithm with soaking time(7 to 70 days),fiber content(40,50,and 60 wt.%)and nanoclay content(0,2,and 4 wt.%)as input parameters.The model’s output is the water uptake percentage.The model has high prediction efficiency,with a correlation coefficient(R)of 0.998 and a mean squared error of 1.38×10^(-4).Experimental and predicted values are in excellent agreement,ensuring the reliability of the ANN for the simulation of nonlinear water absorption behavior.The results identify the synergistic capability of nanoclay and fiber concentration to reduce water absorption and prove the feasibility of ANN as a substitute for time-consuming testing in composite durability estimation.展开更多
Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency sola...Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency solar evaporators remains a significant challenge.Here,inspired by the hierarchical structure of the stem of bird of paradise,a three-dimensional multiscale liquid metal/polyacrylonitrile(LM/PAN)evaporator is fabricated by assembling LM/PAN fibers.The strong localized surface plasmon resonance of LM particles and porous structure of LM/PAN fibers with interconnected channels lead to efficient light absorption up to 90.9%.Consequently,the multiscale biomimetic LM/PAN evaporator achieves an outstanding water evaporation rate of 2.66 kg m^(-2)h^(-1)with a solar energy efficiency of 96.5%under one sun irradiation and an exceptional water rate of 2.58 kg m^(-2)h^(-1)in brine.Additionally,the LM/PAN evaporator demonstrates a superior purification performance for seawater,with the concentration of Na^(+),Mg^(2+),K^(+)and Ca^(2+)in real seawater dramatically decreased by three orders to less than 7 mg L^(-1) after desalination under light irradiation.The multiscale LM/PAN evaporator with hierarchical structure regulates the water transportation as well as thermal management for highly effective solar-driven evaporation,providing valuable insight into the structural design principles for advanced SSG systems.展开更多
This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fi...This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fiber lithiation. Through an analytical shear-lag model and finite element simulations, it is demonstrated that applying tensile pre-strain to carbon fibers before electrode assembly effectively reduces the interfacial shear stress, thereby suppressing debonding. However, the excessive pre-strain can induce the interfacial damage in the unlithiated state, necessitating careful control of the pre-strain within a feasible range. This range is influenced by electrode material properties and geometric parameters. Specifically, the electrodes with the higher solid-state electrolyte elastic modulus and larger electrolyte volume fraction exhibit more significant interfacial damage, making pre-strain application increasingly critical. However, these conditions also impose stricter constraints on the feasible pre-strain range. By elucidating the interplay between pre-strain, material properties, and geometric factors, this study provides valuable insights for optimizing the design of carbon fiber SLIBs.展开更多
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse...Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.展开更多
The automobile industry is the first to form a typical representative of the global industry in modern industry,with the increase of the national emphasis on the environment,the automobile industry was regarded as an ...The automobile industry is the first to form a typical representative of the global industry in modern industry,with the increase of the national emphasis on the environment,the automobile industry was regarded as an important energy consumption and one of the sources of environmental pollution,the policy of energy conservation and emission reduction requirements for the automobile industry are becoming stricter over the years,energy conservation and emission reduction has becomes the main direction of product optimization in the automobile industry in recent years.Due of a series of excellent properties such as light weight and high strength,composite materials have become the main material for the development of lightweight vehicles.With the development of material technology and the update and iteration of manufacturing technology,composite materials are currently popular being adopted in the automotive field.展开更多
The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the...The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%.展开更多
The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac...The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.展开更多
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely...As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.展开更多
Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water d...Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water deteriorates the distillate quality,threatening human health.Herein,we constructed a carbonbased bimetallic(C/FeCo)photothermal membrane by electrospinning technique.Results illustrated that the membrane can catalytically degrade VOCs during SIE with persulfate(PDS)mediation.PDS,as well as phenol,was mainly reacted on the interface of the photothermal membrane instead of in the bulk solution.The interception efficiency of phenol achieved nearly 100%using the C/FeCo membrane during SIE.Hydroxyl radical(•OH),sulfate radical(SO_(4)•−),superoxide radical(O_(2)•−),and singlet oxygen(^(1)O_(2))were identified as the main active substances to degrade VOCs.We also conducted SIE experiments using actual river water to evaluate the practical performance of the C/FeCo membrane.This work holds the promise of VOCs interception during SIE and enlarges the application of solar distillation in water/wastewater treatment.展开更多
In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties wer...In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties were enhanced by adding poplar fibers(WF).From the samples produced,a complete set of characterization was performed including possible crosslinking reactions,morphology,mechanical properties,flame retardancy,thermal insulation and thermal stability.Fourier-transform infrared spectroscopy(FTIR)revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix.Viscosity results indicated that lower prepolymer viscosity led to lower apparent density,while WF addition reduced even more the density.Mechanical tests showed that the maximum compressive strengths were good,while WF improved the compressive strength by up to 56%.Scanning electron microscopy(SEM)showed uniform cell structures,but small open pores were observed.Two-dimensional(2D)CT scan images confirmed the good compatibility between WF and the matrix,with low anisotropy in the material.Friability tests indicated that WF decreased the pulverization ratio of the materials by up to 42%.Thermogravimetric analysis(TGA)showed good thermal stability of the materials up to 328°C.Vertical burning tests showed that the materials were self-extinguishing without residue(dripping).The lowest thermal conductivity was 0.04 W/m·K.These results suggest that these novel formaldehyde-free,high biomass content(95%–96%)foams and composite foams have high potential to replace traditional phenolic foams(PF)in applications such as construction,transportation,packaging,and thermal insulation.展开更多
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by the Science and Technology Development Program of Jilin Province(No.20240101122JC)and(No.20240101143JC)the Key Scientific and Technological Research and Development Projects of Jilin Provincial Science and Technology Department(Grant Number 20230201108GX)。
文摘Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFB3402500)the National Natural Science Foundation of China(Grant No.12372129).
文摘Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.
文摘Sugarcane bagasse(SCB)is a promising natural fiber for bio-based composites,but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance.While chemical treatments have been extensively explored,limited research has addressed how thermal treatment alone alters the surface properties and reinforcing behavior of SCB fibers.This study aims to fill that gap by investigating the effects of heat treatment on SCB fiber structure and its performance in starch/poly(vinyl alcohol)(PVA)composites.Characterization techniques including Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM)were employed to analyze changes in fiber morphology,surface chemistry,and crystallinity.Mechanical properties were assessed via tensile,flexural,and impact testing,and moisture absorption was also evaluated.Composites reinforced with SCB fibers treated at 200○C exhibited significantly superior mechanical properties compared to those prepared with untreated or differently treated fibers.The tensile,flexural,and impact performance of the composites were 15.13,19.37 MPa,and 7.28 J/m,respectively.Composites treated at this temperature also retained better mechanical properties after exposure to humidity.These findings demonstrate that heat treatment is a simple and sustainable method to improve the durability and mechanical performance of nature fiber-reinforced composites,expanding their potential for environmentally friendly material applications.
基金supported by the National Natural Science Foundation of China (No. 52305026)the China Postdoctoral Science Foundation (No. 2023M741941)。
文摘The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths have attracted attention in the field of composites due to their large design space. The major challenge in adopting nonlinear fiber paths is obtaining a fiber path function within the design space that is easily computable and efficiently yields the highest buckling load of a VS plate. In this investigation, an innovative nonlinear function was proposed to describe the fiber orientation by integrating a center fiber angle into the conventional linear function. The parameters of the nonlinear function can directly represent the fiber angles at a fixed position. This novel approach has promising potential for improving the optimal efficiency of fiber paths because the linear and nonlinear functions are simplified with two identical path parameters. Furthermore, a multilevel optimization method was developed by combining finite element analysis(FEA) with an adaptive radial basis function(RBF) surrogate model, and it was found that the number of FEA cases could be reduced by iteratively inheriting training points. The integration of this nonlinear function with a surrogate model is a significant advancement in the structural optimization of composites. Subsequently, the optimal linear and nonlinear fiber paths were computed to maximize the buckling load of VS plates. The FEA results show that the computational efficiency was greatly improved by the proposed nonlinear function and optimization method. The buckling resistance could be enhanced by the nonlinear fiber path, and the reinforcement mechanism was the redistribution and reduction of in-plane compressive stress.
基金supported by the Key Research and Development Plan of Shaanxi Province(No.2023-GHZD-12)the Chinese Aeronautical Establishment Aeronautical Science Foundation(No.20230041053006)the National Natural Science Foundation of China(Nos.12472392 and 12172304).
文摘3D printing has emerged as an advanced manufacturing technique for carbon fiber reinforced composites and relevant structures that endure significant dynamic loads in engineering applications.The dynamic behavior of these materials,primarily influenced by the dynamic fiber pullout interface strength necessitates investigation into the rate-dependent fiber/matrix interfacial strength.This study modifies a Hopkinson tension bar to conduct dynamic pullout tests on a single fiber bundle,utilizing a low-impedance bar and an in-situ calibrated semiconductor strain gauge to capture weak stress signals.Stress equilibrium analyses are performed to validate the transient dynamic loading on single fiber bundle specimens.The results reveal that the fiber/matrix interfacial strength is rate-dependent,increasing with the loading rate,while remaining unaffected by the embedded length.Fracture microstructural analyses show minimal fiber pullout due to high interfacial stresses induced by longer embedded lengths.Lastly,suggestions are made for the efficient design of fiber pullout experiments.
基金supported by the National Natural Science Foundation of China(Nos.U22A20252 and 52173076)the Beijing Natural Science Foundation(Nos.Z240030 and L248023)the Liaoning Province Key Research and Development Project(No.2024JH2/102400046)。
文摘Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the interface of basalt fiber(BF)/poly(vinyl chloride)(PVC)composites.polystyrene/poly(butyl acrylate)(PS/PBA)@silica JPs were synthesized by seed emulsion polymerization and three different sizing agents were prepared for BF sizing treatment.JPs with organic soft sphere and inorganic hard hemisphere enhanced the interfaces through their amphiphilicity,chemical bonding and mechanical interlock.The mechanical properties of composite with JPs sizing treated BFs performed better when there was one JPs layer modified on the interface.According to the intermitting bonding and gradient modulus theory,JPs patterned interfaces are ideal transition layers between high modulus BF and low modulus PVC.
文摘Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechanical properties of carbon fibers, and therefore affect the overall performance of pultruded composites. This study systematically investigated the influence of PAN precursor properties on the degree of graphitization, surface morphology and mechanical properties of carbon fibers by regulating the molecular weight distribution, stretching ratio and impurity content of PAN precursor, and analyzed the mechanism of action of carbon fiber properties on the interfacial bonding strength and tensile/ bending properties of composites in combination with the pultrusion process. The results showed that when the filament stretchability was increased to 4.5 times, the axial orientation of carbon fibers increased by 18% and the tensile strength reached 520 MPa;Filaments with impurity content below 0.3% increase carbon fiber yield by 5.2% and interlaminar shear strength of composites by 23%. This study provides a theoretical basis for raw material screening and process optimization of high-performance carbon fibers and their composites.
文摘A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions.
文摘Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkanoate(PHA),when mixed with natural fibers such as kenaf,hemp,and jute,provide an environmentally acceptable alternative to traditional fossil-based materials.This article examines current research on developments in the integration of biopolymers with natural fibers,with a focus on enhancing mechanical,thermal,and sustainability.Innovative approaches to surface treatment of natural fibers,such as biological and chemical treatments,have demonstrated enhanced adhesion with biopolymer matrices,increasing attributes such as tensile strength and rigidity.Furthermore,nano filling technologies such as nanocellulose and nanoparticles have improved the attributes of multifunctional composites,including heat conductivity and moisture resistance.According to performance analysis,biopolymernatural fiber-based composites may compete with synthetic composites in construction applications,particularly in lightweight buildings and automobiles.However,significant issues such as degradation in humid settings and longtermendurancemust be solved.To support a circular economy,solutions involve the development ofmoisture-resistant polymers and composite recycling technology.This article examines current advancements and identifies problems and opportunities to provide insight into the future direction of more inventive and sustainable biocomposites,and also the dangers they pose to green technology and industrial materials.These findings are significant in terms of the development of building materials which are not only competitive but also contribute to global sustainability.
文摘This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network(ANN)to predict water uptake percentage fromexperimental parameters.Composite laminates are fabricated with varying glass fiber(40-60 wt.%)and nanoclay(0-4 wt.%)contents.Water absorption is evaluated for 70 days of immersion following ASTM D570-98 standards.The inclusion of nanoclay reduces water uptake by creating a tortuous path for moisture diffusion due to its high aspect ratio and platelet morphology,thereby enhancing the composite’s barrier properties.The ANN model is developed with a 3-4-1 feedforward structure and learned through the Levenberg-Marquardt algorithm with soaking time(7 to 70 days),fiber content(40,50,and 60 wt.%)and nanoclay content(0,2,and 4 wt.%)as input parameters.The model’s output is the water uptake percentage.The model has high prediction efficiency,with a correlation coefficient(R)of 0.998 and a mean squared error of 1.38×10^(-4).Experimental and predicted values are in excellent agreement,ensuring the reliability of the ANN for the simulation of nonlinear water absorption behavior.The results identify the synergistic capability of nanoclay and fiber concentration to reduce water absorption and prove the feasibility of ANN as a substitute for time-consuming testing in composite durability estimation.
基金supported by the National Natural Science Foundation of China(52372096,52102368,22205189,52203103)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2017ZT07C291)+4 种基金the Shenzhen Science and Technology Program(JCYJ20230807114205011 and KQTD20170810141424366)the Guang Dong Basic and Applied Basic Research Foundation(2024A1515011953,2022A1515011010 and 2021A1515110350)the Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905)the Shenzhen Natural Science Foundation(GXWD20201231105722002-20200824163747001)the 2023 SZSTI stable support scheme.
文摘Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency solar evaporators remains a significant challenge.Here,inspired by the hierarchical structure of the stem of bird of paradise,a three-dimensional multiscale liquid metal/polyacrylonitrile(LM/PAN)evaporator is fabricated by assembling LM/PAN fibers.The strong localized surface plasmon resonance of LM particles and porous structure of LM/PAN fibers with interconnected channels lead to efficient light absorption up to 90.9%.Consequently,the multiscale biomimetic LM/PAN evaporator achieves an outstanding water evaporation rate of 2.66 kg m^(-2)h^(-1)with a solar energy efficiency of 96.5%under one sun irradiation and an exceptional water rate of 2.58 kg m^(-2)h^(-1)in brine.Additionally,the LM/PAN evaporator demonstrates a superior purification performance for seawater,with the concentration of Na^(+),Mg^(2+),K^(+)and Ca^(2+)in real seawater dramatically decreased by three orders to less than 7 mg L^(-1) after desalination under light irradiation.The multiscale LM/PAN evaporator with hierarchical structure regulates the water transportation as well as thermal management for highly effective solar-driven evaporation,providing valuable insight into the structural design principles for advanced SSG systems.
基金supported by the National Natural Science Foundation of China(Nos.12172205,12072183,12102244,and 12472174)。
文摘This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fiber lithiation. Through an analytical shear-lag model and finite element simulations, it is demonstrated that applying tensile pre-strain to carbon fibers before electrode assembly effectively reduces the interfacial shear stress, thereby suppressing debonding. However, the excessive pre-strain can induce the interfacial damage in the unlithiated state, necessitating careful control of the pre-strain within a feasible range. This range is influenced by electrode material properties and geometric parameters. Specifically, the electrodes with the higher solid-state electrolyte elastic modulus and larger electrolyte volume fraction exhibit more significant interfacial damage, making pre-strain application increasingly critical. However, these conditions also impose stricter constraints on the feasible pre-strain range. By elucidating the interplay between pre-strain, material properties, and geometric factors, this study provides valuable insights for optimizing the design of carbon fiber SLIBs.
基金Project(2021YFC2900200)supported by the National Key Research and Development Project of ChinaProject(20230203114SF)supported by the Key Research and Development Project of Jilin Province,China。
文摘Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.
文摘The automobile industry is the first to form a typical representative of the global industry in modern industry,with the increase of the national emphasis on the environment,the automobile industry was regarded as an important energy consumption and one of the sources of environmental pollution,the policy of energy conservation and emission reduction requirements for the automobile industry are becoming stricter over the years,energy conservation and emission reduction has becomes the main direction of product optimization in the automobile industry in recent years.Due of a series of excellent properties such as light weight and high strength,composite materials have become the main material for the development of lightweight vehicles.With the development of material technology and the update and iteration of manufacturing technology,composite materials are currently popular being adopted in the automotive field.
基金support of the National Natural Science Foundation of China(61971301)In part by the Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant YDZJSX2021A018+1 种基金Shanxi Province Higher Education Science and Technology Innovation Plan Project(2022L060)the Fundamental Research Program of Shanxi Province(Nos.202203021212227,202303021212082).
文摘The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%.
基金co-supported by the National Natural Science Foundation of China(Nos.12372127,12202085,12302464)the Fundamental Research Funds for the Central Universities,China(No.2024CDJXY009)+1 种基金the Chongqing Outstanding Youth Fund,China(No.CSTB2024NSCQ-JQX0028)the Chongqing Natural Science Foundation,China(Nos.cstc2021ycjh-bgzxm0117,CSTB2022NSCQ-MSX0608)。
文摘The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.
基金supported by the National Natural Science Foundation of China(62375013).
文摘As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.
基金the National Natural Science Foundation of China(No.52070052)the National Natural Science Foundation of China(No.52300082)+3 种基金National Key Research and Development Program of China(No.2022YFB3805903)the State Key Laboratory of Urban Water Resource and Environment in HIT of China(No.2022TS14)the China Postdoctoral Science Foundation(No.2023M730881)Postdoctoral Fellowship Program of CPSF(No.GZB20230964)。
文摘Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water deteriorates the distillate quality,threatening human health.Herein,we constructed a carbonbased bimetallic(C/FeCo)photothermal membrane by electrospinning technique.Results illustrated that the membrane can catalytically degrade VOCs during SIE with persulfate(PDS)mediation.PDS,as well as phenol,was mainly reacted on the interface of the photothermal membrane instead of in the bulk solution.The interception efficiency of phenol achieved nearly 100%using the C/FeCo membrane during SIE.Hydroxyl radical(•OH),sulfate radical(SO_(4)•−),superoxide radical(O_(2)•−),and singlet oxygen(^(1)O_(2))were identified as the main active substances to degrade VOCs.We also conducted SIE experiments using actual river water to evaluate the practical performance of the C/FeCo membrane.This work holds the promise of VOCs interception during SIE and enlarges the application of solar distillation in water/wastewater treatment.
基金funded by the Natural Sciences and Engineering Research Council of Canada(NSERC)for financial support,Grant Nos.CG125664 and GF136078.
文摘In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties were enhanced by adding poplar fibers(WF).From the samples produced,a complete set of characterization was performed including possible crosslinking reactions,morphology,mechanical properties,flame retardancy,thermal insulation and thermal stability.Fourier-transform infrared spectroscopy(FTIR)revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix.Viscosity results indicated that lower prepolymer viscosity led to lower apparent density,while WF addition reduced even more the density.Mechanical tests showed that the maximum compressive strengths were good,while WF improved the compressive strength by up to 56%.Scanning electron microscopy(SEM)showed uniform cell structures,but small open pores were observed.Two-dimensional(2D)CT scan images confirmed the good compatibility between WF and the matrix,with low anisotropy in the material.Friability tests indicated that WF decreased the pulverization ratio of the materials by up to 42%.Thermogravimetric analysis(TGA)showed good thermal stability of the materials up to 328°C.Vertical burning tests showed that the materials were self-extinguishing without residue(dripping).The lowest thermal conductivity was 0.04 W/m·K.These results suggest that these novel formaldehyde-free,high biomass content(95%–96%)foams and composite foams have high potential to replace traditional phenolic foams(PF)in applications such as construction,transportation,packaging,and thermal insulation.