期刊文献+
共找到13,941篇文章
< 1 2 250 >
每页显示 20 50 100
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
1
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy Additive manufacturing of composite laminates
原文传递
Preparation and Mechanical Properties of Bionic Carbon Fiber/Epoxy Resin Composites Inspired by Owl Feather 被引量:1
2
作者 Zerun Yu Jiaan Liu +2 位作者 Tian Yang Linyang Zhang Chunhua Hu 《Journal of Bionic Engineering》 2025年第1期282-292,共11页
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn... Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction. 展开更多
关键词 Carbon fiber reinforced epoxy composites Owl feather Bionic feather structure Mechanical properties
在线阅读 下载PDF
Microscopic Modeling and Failure Mechanism Study of Fiber Reinforced Composites Embedded with Optical Fibers
3
作者 Lei Yang Jianfeng Wang +2 位作者 Minjing Liu Chunyu Chen Zhanjun Wu 《Computers, Materials & Continua》 2025年第7期265-279,共15页
Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fib... Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring. 展开更多
关键词 fiber reinforced composites optical fiber microscopic modeling failure mechanism INTERFACE
在线阅读 下载PDF
Bagasse Fibers Surface Heat Treatment and Its Effect on Mechanical Properties of Starch/Poly(Vinyl Alcohol)Composites
4
作者 Xiangyang Zhou Yashi Wang +4 位作者 Min Xiao Jiajun Liu Jiahao Wen Haodong Shen Hucan Hong 《Journal of Polymer Materials》 2025年第3期795-810,共16页
Sugarcane bagasse(SCB)is a promising natural fiber for bio-based composites,but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance.While chemical treatments h... Sugarcane bagasse(SCB)is a promising natural fiber for bio-based composites,but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance.While chemical treatments have been extensively explored,limited research has addressed how thermal treatment alone alters the surface properties and reinforcing behavior of SCB fibers.This study aims to fill that gap by investigating the effects of heat treatment on SCB fiber structure and its performance in starch/poly(vinyl alcohol)(PVA)composites.Characterization techniques including Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM)were employed to analyze changes in fiber morphology,surface chemistry,and crystallinity.Mechanical properties were assessed via tensile,flexural,and impact testing,and moisture absorption was also evaluated.Composites reinforced with SCB fibers treated at 200○C exhibited significantly superior mechanical properties compared to those prepared with untreated or differently treated fibers.The tensile,flexural,and impact performance of the composites were 15.13,19.37 MPa,and 7.28 J/m,respectively.Composites treated at this temperature also retained better mechanical properties after exposure to humidity.These findings demonstrate that heat treatment is a simple and sustainable method to improve the durability and mechanical performance of nature fiber-reinforced composites,expanding their potential for environmentally friendly material applications. 展开更多
关键词 BAGASSE fibers heat treatment compositeS mechanical properties
在线阅读 下载PDF
Surrogate-based buckling analysis and optimization of composite plates modeled using a novel nonlinear function to describe fiber orientation
5
作者 Yang LIU Xinjun LIU 《Chinese Journal of Aeronautics》 2025年第5期458-472,共15页
The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths ... The stiffness properties of variable stiffness(VS) composite plates can be controlled by manipulating the variation in the fiber angle, thereby significantly improving their buckling properties. Nonlinear fiber paths have attracted attention in the field of composites due to their large design space. The major challenge in adopting nonlinear fiber paths is obtaining a fiber path function within the design space that is easily computable and efficiently yields the highest buckling load of a VS plate. In this investigation, an innovative nonlinear function was proposed to describe the fiber orientation by integrating a center fiber angle into the conventional linear function. The parameters of the nonlinear function can directly represent the fiber angles at a fixed position. This novel approach has promising potential for improving the optimal efficiency of fiber paths because the linear and nonlinear functions are simplified with two identical path parameters. Furthermore, a multilevel optimization method was developed by combining finite element analysis(FEA) with an adaptive radial basis function(RBF) surrogate model, and it was found that the number of FEA cases could be reduced by iteratively inheriting training points. The integration of this nonlinear function with a surrogate model is a significant advancement in the structural optimization of composites. Subsequently, the optimal linear and nonlinear fiber paths were computed to maximize the buckling load of VS plates. The FEA results show that the computational efficiency was greatly improved by the proposed nonlinear function and optimization method. The buckling resistance could be enhanced by the nonlinear fiber path, and the reinforcement mechanism was the redistribution and reduction of in-plane compressive stress. 展开更多
关键词 compositeS Variable stiffness Curvilinear fiber BUCKLING OPTIMIZATION
原文传递
Dynamic Loading for Fiber Pullout Interface Strength of 3D-Printed Continuous Carbon Fiber Composites
6
作者 Guo Wang Jianpin Yin +6 位作者 Daxin Zhang Qihao Li Yilun Hu Zhuzhen Fan Lanting Liu Yinggang Miao Zhongbin Tang 《Acta Mechanica Solida Sinica》 2025年第5期897-906,共10页
3D printing has emerged as an advanced manufacturing technique for carbon fiber reinforced composites and relevant structures that endure significant dynamic loads in engineering applications.The dynamic behavior of t... 3D printing has emerged as an advanced manufacturing technique for carbon fiber reinforced composites and relevant structures that endure significant dynamic loads in engineering applications.The dynamic behavior of these materials,primarily influenced by the dynamic fiber pullout interface strength necessitates investigation into the rate-dependent fiber/matrix interfacial strength.This study modifies a Hopkinson tension bar to conduct dynamic pullout tests on a single fiber bundle,utilizing a low-impedance bar and an in-situ calibrated semiconductor strain gauge to capture weak stress signals.Stress equilibrium analyses are performed to validate the transient dynamic loading on single fiber bundle specimens.The results reveal that the fiber/matrix interfacial strength is rate-dependent,increasing with the loading rate,while remaining unaffected by the embedded length.Fracture microstructural analyses show minimal fiber pullout due to high interfacial stresses induced by longer embedded lengths.Lastly,suggestions are made for the efficient design of fiber pullout experiments. 展开更多
关键词 3D printing Hopkinson tension bar Carbon fiber reinforced composites fiber pullout Interfacial strength
原文传递
Janus Particle Sizing Agent for Interfacial Enhancement of Basalt Fiber/Poly(vinyl chloride)Composites
7
作者 Tian-Lin Liu Peng Kang +7 位作者 Hui Wang Da-Li Gao Kai Xu Tao Cai Qi Xin Sheng-Peng Shi Na Wang Fu-Xin Liang 《Chinese Journal of Polymer Science》 2025年第7期1125-1133,共9页
Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the inte... Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the interface of basalt fiber(BF)/poly(vinyl chloride)(PVC)composites.polystyrene/poly(butyl acrylate)(PS/PBA)@silica JPs were synthesized by seed emulsion polymerization and three different sizing agents were prepared for BF sizing treatment.JPs with organic soft sphere and inorganic hard hemisphere enhanced the interfaces through their amphiphilicity,chemical bonding and mechanical interlock.The mechanical properties of composite with JPs sizing treated BFs performed better when there was one JPs layer modified on the interface.According to the intermitting bonding and gradient modulus theory,JPs patterned interfaces are ideal transition layers between high modulus BF and low modulus PVC. 展开更多
关键词 Basalt fiber Sizing agent Janus particle composite Interface
原文传递
Research on the Influence of Polyacrylonitrile Precursor on the Properties of Carbon Fibers and Pultruded Composite Materials
8
作者 Zheng Wei Guoping Hao Yongqiang Zhang 《Journal of World Architecture》 2025年第4期1-8,共8页
Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechani... Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechanical properties of carbon fibers, and therefore affect the overall performance of pultruded composites. This study systematically investigated the influence of PAN precursor properties on the degree of graphitization, surface morphology and mechanical properties of carbon fibers by regulating the molecular weight distribution, stretching ratio and impurity content of PAN precursor, and analyzed the mechanism of action of carbon fiber properties on the interfacial bonding strength and tensile/ bending properties of composites in combination with the pultrusion process. The results showed that when the filament stretchability was increased to 4.5 times, the axial orientation of carbon fibers increased by 18% and the tensile strength reached 520 MPa;Filaments with impurity content below 0.3% increase carbon fiber yield by 5.2% and interlaminar shear strength of composites by 23%. This study provides a theoretical basis for raw material screening and process optimization of high-performance carbon fibers and their composites. 展开更多
关键词 Polyacrylonitrile precursor Carbon fiber PULTRUSION compositeS Performance effects
在线阅读 下载PDF
Shape Memory Properties of Short-Glass Fiber Reinforced Epoxy Composite Programmed below Glass Transition Temperature
9
作者 Kartikey Shahi Velmurugan Ramachandran +1 位作者 Ranjith Mohan Boomurugan Ramachandran 《Journal of Polymer Materials》 2025年第2期477-496,共20页
A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of sho... A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions. 展开更多
关键词 Shape memory polymer composite glass fiber composite shape fixity shape recovery thermomechanical cycle
在线阅读 下载PDF
Integration of Biopolyesters and Natural Fibers in Structural Composites:An Innovative Approach for Sustainable Materials
10
作者 Nasmi Herlina Sari Suteja Widya Fatriasari 《Journal of Renewable Materials》 2025年第8期1521-1546,共26页
Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkano... Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkanoate(PHA),when mixed with natural fibers such as kenaf,hemp,and jute,provide an environmentally acceptable alternative to traditional fossil-based materials.This article examines current research on developments in the integration of biopolymers with natural fibers,with a focus on enhancing mechanical,thermal,and sustainability.Innovative approaches to surface treatment of natural fibers,such as biological and chemical treatments,have demonstrated enhanced adhesion with biopolymer matrices,increasing attributes such as tensile strength and rigidity.Furthermore,nano filling technologies such as nanocellulose and nanoparticles have improved the attributes of multifunctional composites,including heat conductivity and moisture resistance.According to performance analysis,biopolymernatural fiber-based composites may compete with synthetic composites in construction applications,particularly in lightweight buildings and automobiles.However,significant issues such as degradation in humid settings and longtermendurancemust be solved.To support a circular economy,solutions involve the development ofmoisture-resistant polymers and composite recycling technology.This article examines current advancements and identifies problems and opportunities to provide insight into the future direction of more inventive and sustainable biocomposites,and also the dangers they pose to green technology and industrial materials.These findings are significant in terms of the development of building materials which are not only competitive but also contribute to global sustainability. 展开更多
关键词 Biopolymers natural fibers sustainable composites material innovation green technology
在线阅读 下载PDF
Prediction of Water Uptake Percentage of Nanoclay-Modified Glass Fiber/Epoxy Composites Using Artificial Neural Network Modelling
11
作者 Ashwini Bhat Nagaraj N.Katagi +1 位作者 M.C.Gowrishankar Manjunath Shettar 《Computers, Materials & Continua》 2025年第11期2715-2728,共14页
This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network(ANN)to predict water uptake percentage fromexperimental parameters.Com... This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network(ANN)to predict water uptake percentage fromexperimental parameters.Composite laminates are fabricated with varying glass fiber(40-60 wt.%)and nanoclay(0-4 wt.%)contents.Water absorption is evaluated for 70 days of immersion following ASTM D570-98 standards.The inclusion of nanoclay reduces water uptake by creating a tortuous path for moisture diffusion due to its high aspect ratio and platelet morphology,thereby enhancing the composite’s barrier properties.The ANN model is developed with a 3-4-1 feedforward structure and learned through the Levenberg-Marquardt algorithm with soaking time(7 to 70 days),fiber content(40,50,and 60 wt.%)and nanoclay content(0,2,and 4 wt.%)as input parameters.The model’s output is the water uptake percentage.The model has high prediction efficiency,with a correlation coefficient(R)of 0.998 and a mean squared error of 1.38×10^(-4).Experimental and predicted values are in excellent agreement,ensuring the reliability of the ANN for the simulation of nonlinear water absorption behavior.The results identify the synergistic capability of nanoclay and fiber concentration to reduce water absorption and prove the feasibility of ANN as a substitute for time-consuming testing in composite durability estimation. 展开更多
关键词 Glass fiber epoxy composites NANOCLAY water uptake ANN
在线阅读 下载PDF
Multiscale Biomimetic Evaporators Based on Liquid Metal/Polyacrylonitrile Composite Fibers for Highly Efficient Solar Steam Generation
12
作者 Yuxuan Sun Dan Liu +3 位作者 Fei Zhang Xiaobo Gao Jie Xue Qingbin Zheng 《Nano-Micro Letters》 2025年第6期93-111,共19页
Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency sola... Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency solar evaporators remains a significant challenge.Here,inspired by the hierarchical structure of the stem of bird of paradise,a three-dimensional multiscale liquid metal/polyacrylonitrile(LM/PAN)evaporator is fabricated by assembling LM/PAN fibers.The strong localized surface plasmon resonance of LM particles and porous structure of LM/PAN fibers with interconnected channels lead to efficient light absorption up to 90.9%.Consequently,the multiscale biomimetic LM/PAN evaporator achieves an outstanding water evaporation rate of 2.66 kg m^(-2)h^(-1)with a solar energy efficiency of 96.5%under one sun irradiation and an exceptional water rate of 2.58 kg m^(-2)h^(-1)in brine.Additionally,the LM/PAN evaporator demonstrates a superior purification performance for seawater,with the concentration of Na^(+),Mg^(2+),K^(+)and Ca^(2+)in real seawater dramatically decreased by three orders to less than 7 mg L^(-1) after desalination under light irradiation.The multiscale LM/PAN evaporator with hierarchical structure regulates the water transportation as well as thermal management for highly effective solar-driven evaporation,providing valuable insight into the structural design principles for advanced SSG systems. 展开更多
关键词 Liquid metal POLYACRYLONITRILE composite fibers Solar steam generation Seawater desalination
在线阅读 下载PDF
A pre-strain strategy for suppressing interfacial debonding in carbon fiber structural battery composites
13
作者 Chuanxi HU Bo LU +2 位作者 Yinhua BAO Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1699-1714,共16页
This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fi... This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fiber lithiation. Through an analytical shear-lag model and finite element simulations, it is demonstrated that applying tensile pre-strain to carbon fibers before electrode assembly effectively reduces the interfacial shear stress, thereby suppressing debonding. However, the excessive pre-strain can induce the interfacial damage in the unlithiated state, necessitating careful control of the pre-strain within a feasible range. This range is influenced by electrode material properties and geometric parameters. Specifically, the electrodes with the higher solid-state electrolyte elastic modulus and larger electrolyte volume fraction exhibit more significant interfacial damage, making pre-strain application increasingly critical. However, these conditions also impose stricter constraints on the feasible pre-strain range. By elucidating the interplay between pre-strain, material properties, and geometric factors, this study provides valuable insights for optimizing the design of carbon fiber SLIBs. 展开更多
关键词 PRE-STRAIN carbon fiber interfacial debonding structural battery composite mechanically-based design
在线阅读 下载PDF
Mechanical properties and wear behavior of extruded basalt fibers/7075 aluminum matrix composites used for drill pipes
14
作者 MA Yin-long SUN Zhi-gang +3 位作者 XIONG Hong-wei REN Jie ZHAO Jing-jing GUO Cheng-bin 《Journal of Central South University》 2025年第1期21-33,共13页
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse... Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes. 展开更多
关键词 aluminum matrix composites basalt fibers mechanical properties wear behavior
在线阅读 下载PDF
Application of Carbon Fiber Composite Materials for Automotive Lightweighting
15
作者 Guoping Hao Zheng Wei Yongqiang Zhang 《Journal of World Architecture》 2025年第4期9-14,共6页
The automobile industry is the first to form a typical representative of the global industry in modern industry,with the increase of the national emphasis on the environment,the automobile industry was regarded as an ... The automobile industry is the first to form a typical representative of the global industry in modern industry,with the increase of the national emphasis on the environment,the automobile industry was regarded as an important energy consumption and one of the sources of environmental pollution,the policy of energy conservation and emission reduction requirements for the automobile industry are becoming stricter over the years,energy conservation and emission reduction has becomes the main direction of product optimization in the automobile industry in recent years.Due of a series of excellent properties such as light weight and high strength,composite materials have become the main material for the development of lightweight vehicles.With the development of material technology and the update and iteration of manufacturing technology,composite materials are currently popular being adopted in the automotive field. 展开更多
关键词 Automobile lightweight Carbon fiber composite Application research
在线阅读 下载PDF
Antibacterial Properties of Carbon Fiber/Polyether Ether Ketone Artificial Bone Composites Modified by Black Phosphorus Coating Assisted by Wet Chemical Nitration Surface Treatment
16
作者 Luxiao Sang Hao Li +4 位作者 Runze Shi Wen Qin Tong Xing Shengnan Qin Aoqun Jian 《Journal of Bionic Engineering》 2025年第2期838-850,共13页
The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the... The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%. 展开更多
关键词 Carbon fiber reinforced peek composites Surface modification Black phosphorus Microstructure Antibacterial property
在线阅读 下载PDF
High-temperature effect on continuous glass fiber reinforced polypropylene multilayer composite and corrugated sandwich panels
17
作者 Shuyan NIE Xin PAN +2 位作者 Liming CHEN Bing DU Jie WANG 《Chinese Journal of Aeronautics》 2025年第1期607-621,共15页
The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac... The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength. 展开更多
关键词 High-temperature effect fiber reinforced plastic composite structure Sandwich structure Interface delamination Strength theory
原文传递
Temperature error compensation method for fiber optic gyroscope based on a composite model of k-means,support vector regression and particle swarm optimization
18
作者 CAO Yin LI Lijing LIANG Sheng 《Journal of Systems Engineering and Electronics》 2025年第2期510-522,共13页
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely... As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields. 展开更多
关键词 fiber optic gyroscope(FOG) temperature error com-pensation composite model machine learning CLUSTERING regression.
在线阅读 下载PDF
Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation
19
作者 Yuling Ma Dongqing Liu +4 位作者 Tao Zhang Chengjie Song Dongmei Liu Peizhi Wang Wei Wang 《Chinese Chemical Letters》 2025年第3期151-155,共5页
Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water d... Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water deteriorates the distillate quality,threatening human health.Herein,we constructed a carbonbased bimetallic(C/FeCo)photothermal membrane by electrospinning technique.Results illustrated that the membrane can catalytically degrade VOCs during SIE with persulfate(PDS)mediation.PDS,as well as phenol,was mainly reacted on the interface of the photothermal membrane instead of in the bulk solution.The interception efficiency of phenol achieved nearly 100%using the C/FeCo membrane during SIE.Hydroxyl radical(•OH),sulfate radical(SO_(4)•−),superoxide radical(O_(2)•−),and singlet oxygen(^(1)O_(2))were identified as the main active substances to degrade VOCs.We also conducted SIE experiments using actual river water to evaluate the practical performance of the C/FeCo membrane.This work holds the promise of VOCs interception during SIE and enlarges the application of solar distillation in water/wastewater treatment. 展开更多
关键词 Solar distillation Interfacial evaporation Volatile organic compounds Bimetallic composite carbon fiber Persulfate mediation
原文传递
Environmentally Friendly Tannic Acid-Furfuryl Alcohol-Soybean Isolate/Casein Composite Foams Reinforced with Wood Fibers
20
作者 Jinxing Li Mustafa Zor +3 位作者 Xiaojian Zhou Guanben Du Denis Rodrigue Xiaodong(Alice)Wang 《Journal of Renewable Materials》 2025年第2期329-347,共19页
In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties wer... In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties were enhanced by adding poplar fibers(WF).From the samples produced,a complete set of characterization was performed including possible crosslinking reactions,morphology,mechanical properties,flame retardancy,thermal insulation and thermal stability.Fourier-transform infrared spectroscopy(FTIR)revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix.Viscosity results indicated that lower prepolymer viscosity led to lower apparent density,while WF addition reduced even more the density.Mechanical tests showed that the maximum compressive strengths were good,while WF improved the compressive strength by up to 56%.Scanning electron microscopy(SEM)showed uniform cell structures,but small open pores were observed.Two-dimensional(2D)CT scan images confirmed the good compatibility between WF and the matrix,with low anisotropy in the material.Friability tests indicated that WF decreased the pulverization ratio of the materials by up to 42%.Thermogravimetric analysis(TGA)showed good thermal stability of the materials up to 328°C.Vertical burning tests showed that the materials were self-extinguishing without residue(dripping).The lowest thermal conductivity was 0.04 W/m·K.These results suggest that these novel formaldehyde-free,high biomass content(95%–96%)foams and composite foams have high potential to replace traditional phenolic foams(PF)in applications such as construction,transportation,packaging,and thermal insulation. 展开更多
关键词 Foam composite tannic acid soybean isolate protein CASEIN poplar fiber compressive strength flame retardancy thermal insulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部