期刊文献+
共找到4,134篇文章
< 1 2 207 >
每页显示 20 50 100
A 3D semantic segmentation network for accurate neuronal soma segmentation
1
作者 Li Ma Qi Zhong +2 位作者 Yezi Wang Xiaoquan Yang Qian Du 《Journal of Innovative Optical Health Sciences》 2025年第1期67-83,共17页
Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a chall... Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively. 展开更多
关键词 Neuronal soma segmentation semantic segmentation network multi-scale feature extraction adaptive weighting fusion
原文传递
SVSNet:Scleral vessel segmentation with a CNN-Transformer hybrid network
2
作者 Hantao Bai Zongqing Ma +1 位作者 Chuxiang Gao Jiang Zhu 《Journal of Innovative Optical Health Sciences》 2025年第6期107-123,共17页
Scleral vessels on the surface of the human eye can provide valuable information about potential diseases or dysfunctions of specific organs,and vessel segmentation is a key step in characterizing the scleral vessels.... Scleral vessels on the surface of the human eye can provide valuable information about potential diseases or dysfunctions of specific organs,and vessel segmentation is a key step in characterizing the scleral vessels.However,accurate segmentation of blood vessels in the scleral images is a challenging task due to the intricate texture,tenuous structure,and erratic network of the scleral vessels.In this work,we propose a CNN-Transformer hybrid network named SVSNet for automatic scleral vessel segmentation.Following the typical U-shape encoder-decoder architecture,the SVSNet integrates a Sobel edge detection module to provide edge prior and further combines the Atrous Spatial Pyramid Pooling module to enhance its ability to extract vessels of various sizes.At the end of the encoding path,a vision Transformer module is incorporated to capture the global context and improve the continuity of the vessel network.To validate the effectiveness of the proposed SVSNet,comparative experiments are conducted on two public scleral image datasets,and the results show that the SVSNet outperforms other state-of-the-art models.Further experiments on three public retinal image datasets demonstrate that the SVSNet can be easily applied to other vessel datasets with good generalization capability. 展开更多
关键词 Image segmentation vision Transformer convolutional neural network multi-scale feature fusion scleral image
原文传递
M2ANet:Multi-branch and multi-scale attention network for medical image segmentation
3
作者 Wei Xue Chuanghui Chen +3 位作者 Xuan Qi Jian Qin Zhen Tang Yongsheng He 《Chinese Physics B》 2025年第8期547-559,共13页
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ... Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures. 展开更多
关键词 medical image segmentation convolutional neural network multi-branch attention multi-scale feature fusion
原文传递
KD-SegNet: Efficient Semantic Segmentation Network with Knowledge Distillation Based on Monocular Camera
4
作者 Thai-Viet Dang Nhu-Nghia Bui Phan Xuan Tan 《Computers, Materials & Continua》 2025年第2期2001-2026,共26页
Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training per... Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training performance, the ability to effectively exploit the dataset, and the ability to adapt to complex environments when deploying the model. By utilizing the knowledge distillation techniques, the article strives to overcome the above challenges with the inheritance of the advantages of both the teacher model and the student model. More precisely, the ResNet152-PSP-Net model’s characteristics are utilized to train the ResNet18-PSP-Net model. Pyramid pooling blocks are utilized to decode multi-scale feature maps, creating a complete semantic map inference. The student model not only preserves the strong segmentation performance from the teacher model but also improves the inference speed of the prediction results. The proposed method exhibits a clear advantage over conventional convolutional neural network (CNN) models, as evident from the conducted experiments. Furthermore, the proposed model also shows remarkable improvement in processing speed when compared with light-weight models such as MobileNetV2 and EfficientNet based on latency and throughput parameters. The proposed KD-SegNet model obtains an accuracy of 96.3% and a mIoU (mean Intersection over Union) of 77%, outperforming the performance of existing models by more than 15% on the same training dataset. The suggested method has an average training time that is only 0.51 times less than same field models, while still achieving comparable segmentation performance. Hence, the semantic segmentation frames are collected, forming the motion trajectory for the system in the environment. Overall, this architecture shows great promise for the development of knowledge-based systems for MR’s navigation. 展开更多
关键词 Mobile robot navigation semantic segmentation knowledge distillation pyramid scene parsing fully convolutional networks
在线阅读 下载PDF
Image segmentation network for laparoscopic surgery
5
作者 Kang Peng Yaoyuan Chang +4 位作者 Guodong Lang Jian Xu Yongsheng Gao Jiajun Yin Jie Zhao 《Biomimetic Intelligence & Robotics》 2025年第3期56-67,共12页
Surgical image segmentation serves as the foundation for laparoscopic surgical navigation technol-ogy.The indistinct local features of biological tissues in laparoscopic image pose challenges for image segmentation.To... Surgical image segmentation serves as the foundation for laparoscopic surgical navigation technol-ogy.The indistinct local features of biological tissues in laparoscopic image pose challenges for image segmentation.To address this issue,we develop an image segmentation network tailored for laparoscopic surgery.Firstly,we introduce the Mixed Attention Enhancement(MAE)module that sequentially conducts the Channel Attention Enhancement(CAE)module and the Global Feature Enhancement(GFE)module linked in series.The CAE module enhances the network's perception of prominent channels,allowing feature maps to exhibit clear local features.The GFE module is capable of extracting global features from both the height and width dimensions of images and integrating them into three-dimensional features.This enhancement improves the network's ability to capture global features,thereby facilitating the inference of regions with indistinct local features.Secondly,we propose the Multi-scale Feature Fusion(MFF)module.This module expands the feature map into various scales,further enlarging the network's receptive field and enhancing perception of features at multiple scales.In addition,we tested the proposed network on the EndoVis 2018 and a human minimally invasive liver resection image segmentation dataset,comparing it against six other advanced image segmentation networks.The comparative test results demonstrate that the proposed network achieves the most advanced performance on both datasets,proving its potential in improving surgical image segmentation outcome. 展开更多
关键词 Laparoscopic surgery image Medical image segmentation Convolutional neural networks Attention mechanism Feature fusion
原文传递
3D medical image segmentation using the serial-parallel convolutional neural network and transformer based on crosswindow self-attention
6
作者 Bin Yu Quan Zhou +3 位作者 Li Yuan Huageng Liang Pavel Shcherbakov Xuming Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期337-348,共12页
Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global featu... Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance. 展开更多
关键词 convolution neural network cross window self‐attention medical image segmentation transformer
在线阅读 下载PDF
MultiJSQ:Direct joint segmentation and quantification of left ventricle with deep multitask-derived regression network
7
作者 Xiuquan Du Zheng Pei +3 位作者 Ying Liu Xinzhi Cao Lei Li Shuo Li 《CAAI Transactions on Intelligence Technology》 2025年第1期175-192,共18页
Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease.However,the manual calculation of these parameters is challenging due to the high va... Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease.However,the manual calculation of these parameters is challenging due to the high variability among patients and the time-consuming nature of the process.In this study,the authors introduce a framework named MultiJSQ,comprising the feature presentation network(FRN)and the indicator prediction network(IEN),which is designed for simultaneous joint segmentation and quantification.The FRN is tailored for representing global image features,facilitating the direct acquisition of left ventricle(LV)contour images through pixel classification.Additionally,the IEN incorporates specifically designed modules to extract relevant clinical indices.The authors’method considers the interdependence of different tasks,demonstrating the validity of these relationships and yielding favourable results.Through extensive experiments on cardiac MR images from 145 patients,MultiJSQ achieves impressive outcomes,with low mean absolute errors of 124 mm^(2),1.72 mm,and 1.21 mm for areas,dimensions,and regional wall thicknesses,respectively,along with a Dice metric score of 0.908.The experimental findings underscore the excellent performance of our framework in LV segmentation and quantification,highlighting its promising clinical application prospects. 展开更多
关键词 global image features joint segmentation and quantification left ventricle(LV) multitask-derived regression network
在线阅读 下载PDF
Automatic Segmentation of Liver Tumor in CT Images with Deep Convolutional Neural Networks 被引量:19
8
作者 Wen Li Fucang Jia Qingmao Hu 《Journal of Computer and Communications》 2015年第11期146-151,共6页
Liver tumors segmentation from computed tomography (CT) images is an essential task for diagnosis and treatments of liver cancer. However, it is difficult owing to the variability of appearances, fuzzy boundaries, het... Liver tumors segmentation from computed tomography (CT) images is an essential task for diagnosis and treatments of liver cancer. However, it is difficult owing to the variability of appearances, fuzzy boundaries, heterogeneous densities, shapes and sizes of lesions. In this paper, an automatic method based on convolutional neural networks (CNNs) is presented to segment lesions from CT images. The CNNs is one of deep learning models with some convolutional filters which can learn hierarchical features from data. We compared the CNNs model to popular machine learning algorithms: AdaBoost, Random Forests (RF), and support vector machine (SVM). These classifiers were trained by handcrafted features containing mean, variance, and contextual features. Experimental evaluation was performed on 30 portal phase enhanced CT images using leave-one-out cross validation. The average Dice Similarity Coefficient (DSC), precision, and recall achieved of 80.06% ± 1.63%, 82.67% ± 1.43%, and 84.34% ± 1.61%, respectively. The results show that the CNNs method has better performance than other methods and is promising in liver tumor segmentation. 展开更多
关键词 LIVER TUMOR segmentation Convolutional NEURAL networks DEEP Learning CT Image
在线阅读 下载PDF
Segmentation of retinal fluid based on deep learning:application of three-dimensional fully convolutional neural networks in optical coherence tomography images 被引量:4
9
作者 Meng-Xiao Li Su-Qin Yu +4 位作者 Wei Zhang Hao Zhou Xun Xu Tian-Wei Qian Yong-Jing Wan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第6期1012-1020,共9页
AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segment... AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data. 展开更多
关键词 optical COHERENCE tomography IMAGES FLUID segmentation 2D fully convolutional network 3D fully convolutional network
原文传递
Color Image Segmentation Using Feedforward Neural Networks with FCM 被引量:3
10
作者 S.Arumugadevi V.Seenivasagam 《International Journal of Automation and computing》 EI CSCD 2016年第5期491-500,共10页
This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed int... This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed into fuzzy C-means (FCM) clustering which is an unsupervised method. The labels obtained from the clustering method FCM are used as a target of the supervised feed forward neural network. The network is trained by the Levenberg-Marquardt back-propagation algorithm, and evaluates its performance using mean square error and regression analysis. The main issues of clustering methods are determining the number of clusters and cluster validity measures. This paper presents a method namely co-occurrence matrix based algorithm for finding the number of clusters and silhouette index values that are used for cluster validation. The proposed method is tested on various color images obtained from the Berkeley database. The segmentation results from the proposed method are validated and the classification accuracy is evaluated by the parameters sensitivity, specificity, and accuracy. 展开更多
关键词 Color image segmentation neural networks fuzzy C-means (FCM) soft computing CLUSTERING
原文传递
Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks 被引量:4
11
作者 Zurui Ao Fangfang Wu +4 位作者 Saihan Hu Ying Sun Yanjun Su Qinghua Guo Qinchuan Xin 《The Crop Journal》 SCIE CSCD 2022年第5期1239-1250,共12页
High-throughput maize phenotyping at both organ and plant levels plays a key role in molecular breeding for increasing crop yields. Although the rapid development of light detection and ranging(Li DAR) provides a new ... High-throughput maize phenotyping at both organ and plant levels plays a key role in molecular breeding for increasing crop yields. Although the rapid development of light detection and ranging(Li DAR) provides a new way to characterize three-dimensional(3 D) plant structure, there is a need to develop robust algorithms for extracting 3 D phenotypic traits from Li DAR data to assist in gene identification and selection. Accurate 3 D phenotyping in field environments remains challenging, owing to difficulties in segmentation of organs and individual plants in field terrestrial Li DAR data. We describe a two-stage method that combines both convolutional neural networks(CNNs) and morphological characteristics to segment stems and leaves of individual maize plants in field environments. It initially extracts stem points using the Point CNN model and obtains stem instances by fitting 3 D cylinders to the points. It then segments the field Li DAR point cloud into individual plants using local point densities and 3 D morphological structures of maize plants. The method was tested using 40 samples from field observations and showed high accuracy in the segmentation of both organs(F-score =0.8207) and plants(Fscore =0.9909). The effectiveness of terrestrial Li DAR for phenotyping at organ(including leaf area and stem position) and individual plant(including individual height and crown width) levels in field environments was evaluated. The accuracies of derived stem position(position error =0.0141 m), plant height(R^(2)>0.99), crown width(R^(2)>0.90), and leaf area(R^(2)>0.85) allow investigating plant structural and functional phenotypes in a high-throughput way. This CNN-based solution overcomes the major challenges in organ-level phenotypic trait extraction associated with the organ segmentation, and potentially contributes to studies of plant phenomics and precision agriculture. 展开更多
关键词 Terrestrial LiDAR PHENOTYPE Organ segmentation Convolutional neural networks
在线阅读 下载PDF
3D brain glioma segmentation in MRI through integrating multiple densely connected 2D convolutional neural networks 被引量:5
12
作者 Xiaobing ZHANG Yin HU +2 位作者 Wen CHEN Gang HUANG Shengdong NIE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第6期462-475,共14页
To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates ... To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates the segmentation results of three densely connected 2 D convolutional neural networks(2 D-CNNs).In order to combine the lowlevel features and high-level features,we added densely connected blocks in the network structure design so that the low-level features will not be missed as the network layer increases during the learning process.Further,in order to resolve the problems of the blurred boundary of the glioma edema area,we superimposed and fused the T2-weighted fluid-attenuated inversion recovery(FLAIR)modal image and the T2-weighted(T2)modal image to enhance the edema section.For the loss function of network training,we improved the cross-entropy loss function to effectively avoid network over-fitting.On the Multimodal Brain Tumor Image Segmentation Challenge(BraTS)datasets,our method achieves dice similarity coefficient values of 0.84,0.82,and 0.83 on the BraTS2018 training;0.82,0.85,and 0.83 on the BraTS2018 validation;and 0.81,0.78,and 0.83 on the BraTS2013 testing in terms of whole tumors,tumor cores,and enhancing cores,respectively.Experimental results showed that the proposed method achieved promising accuracy and fast processing,demonstrating good potential for clinical medicine. 展开更多
关键词 GLIOMA Magnetic resonance imaging(MRI) segmentation Dense block 2D convolutional neural networks(2D-CNNs)
原文传递
Detection and Classification of Brain Tumor Based on Multilevel Segmentation with Convolutional Neural Network 被引量:3
13
作者 Rafiqul Islam Shah Imran +1 位作者 Md. Ashikuzzaman Md. Munim Ali Khan 《Journal of Biomedical Science and Engineering》 2020年第4期45-53,共9页
Magnetic Resonance Imaging (MRI) is an important diagnostic technique for early detection of brain Tumor and the classification of brain Tumor from MRI image is a challenging research work because of its different sha... Magnetic Resonance Imaging (MRI) is an important diagnostic technique for early detection of brain Tumor and the classification of brain Tumor from MRI image is a challenging research work because of its different shapes, location and image intensities. For successful classification, the segmentation method is required to separate Tumor. Then important features are extracted from the segmented Tumor that is used to classify the Tumor. In this work, an efficient multilevel segmentation method is developed combining optimal thresholding and watershed segmentation technique followed by a morphological operation to separate the Tumor. Convolutional Neural Network (CNN) is then applied for feature extraction and finally, the Kernel Support Vector Machine (KSVM) is utilized for resultant classification that is justified by our experimental evaluation. Experimental results show that the proposed method effectively detect and classify the Tumor as cancerous or non-cancerous with promising accuracy. 展开更多
关键词 segmentation Classification Non-Cancerous TUMOR Cancerous TUMOR FEATURE Extraction Convolutional Neural network
暂未订购
Remote Sensing Image Segmentation with Probabilistic Neural Networks 被引量:4
14
作者 LIU Gang 《Geo-Spatial Information Science》 2005年第1期28-32,49,共6页
This paper focuses on the image segmentation with probabilistic neural networks(PNNs).Back propagation neural networks(BpNNs)and multi perceptron neural networks(MLPs)are also considered in this study.Especially,this ... This paper focuses on the image segmentation with probabilistic neural networks(PNNs).Back propagation neural networks(BpNNs)and multi perceptron neural networks(MLPs)are also considered in this study.Especially,this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN.The comparison between image segmentations with PNNs and with other neural networks is given.The experimental results show that PNNs can be successfully applied to image segmentation for good results. 展开更多
关键词 image segmentation probabilistic neural network(PNN)
在线阅读 下载PDF
Axial Assembled Correspondence Network for Few-Shot Semantic Segmentation 被引量:3
15
作者 Yu Liu Bin Jiang Jiaming Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期711-721,共11页
Few-shot semantic segmentation aims at training a model that can segment novel classes in a query image with only a few densely annotated support exemplars.It remains a challenge because of large intra-class variation... Few-shot semantic segmentation aims at training a model that can segment novel classes in a query image with only a few densely annotated support exemplars.It remains a challenge because of large intra-class variations between the support and query images.Existing approaches utilize 4D convolutions to mine semantic correspondence between the support and query images.However,they still suffer from heavy computation,sparse correspondence,and large memory.We propose axial assembled correspondence network(AACNet)to alleviate these issues.The key point of AACNet is the proposed axial assembled 4D kernel,which constructs the basic block for semantic correspondence encoder(SCE).Furthermore,we propose the deblurring equations to provide more robust correspondence for the aforementioned SCE and design a novel fusion module to mix correspondences in a learnable manner.Experiments on PASCAL-5~i reveal that our AACNet achieves a mean intersection-over-union score of 65.9%for 1-shot segmentation and 70.6%for 5-shot segmentation,surpassing the state-of-the-art method by 5.8%and 5.0%respectively. 展开更多
关键词 Artificial intelligence computer vision deep convolutional neural network few-shot semantic segmentation
在线阅读 下载PDF
Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation 被引量:3
16
作者 Muwei Jian Ronghua Wu +2 位作者 Hongyu Chen Lanqi Fu Chengdong Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期705-716,共12页
In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intel... In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results.To address this challenge,we design a Dual-Branch-UNet framework,which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation.To be more explicit,we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the original U-Net.Then,image features are combined at each layer to produce richer semantic data and the model’s capacity is adjusted to various input images.Meanwhile,in the lower sampling section,we give up pooling and conduct the lower sampling by convolution operation to control step size for information fusion.We also employ an attentionmodule in the decoder stage to filter the image noises so as to lessen the response of irrelevant features.Experiments are verified and compared on the DRIVE and ARIA datasets for retinal vessels segmentation.The proposed Dual-Branch-UNet has proved to be superior to other five typical state-of-the-art methods. 展开更多
关键词 Convolutional neural network medical image processing retinal vessel segmentation
在线阅读 下载PDF
Residual U-Network for Breast Tumor Segmentation from Magnetic Resonance Images 被引量:2
17
作者 Ishu Anand Himani Negi +3 位作者 Deepika Kumar Mamta Mittal Tai-hoon Kim Sudipta Roy 《Computers, Materials & Continua》 SCIE EI 2021年第6期3107-3127,共21页
Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world.It is apical of all new cancer incidences analyzed among females.Two f... Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world.It is apical of all new cancer incidences analyzed among females.Two features substantially inuence the classication accuracy of malignancy and benignity in automated cancer diagnostics.These are the precision of tumor segmentation and appropriateness of extracted attributes required for the diagnosis.In this research,the authors have proposed a ResU-Net(Residual U-Network)model for breast tumor segmentation.The proposed methodology renders augmented,and precise identication of tumor regions and produces accurate breast tumor segmentation in contrast-enhanced MR images.Furthermore,the proposed framework also encompasses the residual network technique,which subsequently enhances the performance and displays the improved training process.Over and above,the performance of ResU-Net has experimentally been analyzed with conventional U-Net,FCN8,FCN32.Algorithm performance is evaluated in the form of dice coefcient and MIoU(Mean Intersection of Union),accuracy,loss,sensitivity,specicity,F1score.Experimental results show that ResU-Net achieved validation accuracy&dice coefcient value of 73.22%&85.32%respectively on the Rider Breast MRI dataset and outperformed as compared to the other algorithms used in experimentation. 展开更多
关键词 UNet segmentation residual network breast cancer dice coefcient MRI
在线阅读 下载PDF
Mu-Net:Multi-Path Upsampling Convolution Network for Medical Image Segmentation 被引量:2
18
作者 Jia Chen Zhiqiang He +3 位作者 Dayong Zhu Bei Hui Rita Yi Man Li Xiao-Guang Yue 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期73-95,共23页
Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of... Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half. 展开更多
关键词 Medical image segmentation MU-Net(multi-path upsampling convolution network) U-Net clinical diagnosis encoder-decoder networks
在线阅读 下载PDF
Real-time object segmentation based on convolutional neural network with saliency optimization for picking 被引量:1
19
作者 CHEN Jinbo WANG Zhiheng LI Hengyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1300-1307,共8页
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio... This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop. 展开更多
关键词 convolutional neural network object detection object segmentation superpixel saliency optimization
在线阅读 下载PDF
Image segmentation algorithm based on high-dimension fuzzy character and restrained clustering network 被引量:2
20
作者 Baoping Wang Yang Fang Chao Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期298-306,共9页
An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification ... An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance. 展开更多
关键词 image segmentation high-dimension fuzzy character restrained fuzzy Kohonen clustering network (RFKCN).
在线阅读 下载PDF
上一页 1 2 207 下一页 到第
使用帮助 返回顶部