The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of r...The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.展开更多
Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, cha...Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid two-phase turbulence can be well predicted by this model.展开更多
Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique. The porous medium was a packed bed of glass beads. Spin echo multi seq...Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique. The porous medium was a packed bed of glass beads. Spin echo multi sequence was used to measure the distribution of CO2 and water in the porous medium. The intensity images show that the fluid distribution is non-uniform due to its viscosity and pore structure of porous medium. The velocity distribution of fluids is calculated from the saturation of water and porosity of porous medium. The experimental results show that fluid velocities vary with time and position. The capillary dispersion rate donated the effects of capillary, which was largest at water saturations of 0.45. The displacement process is different between in BZ-02 and BZ-2. The final water residual saturation depends on permeability and porosity.展开更多
Hemoglobin was used as a mimetic enzyme for peroxidase to catalyze the oxidative reaction of o-phenylenediamine with H2O2 which functioned as an oxidant. The relationship between physicochemical properties of the inte...Hemoglobin was used as a mimetic enzyme for peroxidase to catalyze the oxidative reaction of o-phenylenediamine with H2O2 which functioned as an oxidant. The relationship between physicochemical properties of the intermediate and enzymatic activity of hemoglobin was studied. Since the solubility of the intermediate in the reaction is higher in butanol phase than in water phase, the intermediate itself diffused from the aqueous phase to the butanol phase. The experimental results showed that the rate of product and the stability of intermediate were associated with the temperature and the pH value of the buffer. The formation rate of intermediate and half-life period reveal the maximal in pH7, nevertheless, the whole rate of the catalytic reaction is the greatest in pH5, which the ratio of the initial rate in final product formation compared to that intermediate formation is the greatest.展开更多
We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of ...We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of the nonlinear system of equations admits a weak solution.展开更多
A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–...A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–6000 Da), p H(4.0–7.0), percentage of PEG(10.0–20.0 w/w), percentage of MgSO_4(8.0–16.0 w/w), percentage of the cell homogenate(10.0–20.0 w/w) and the percentage of MnSO_4(0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting(AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules.展开更多
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne...Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.展开更多
In distributed parallel server system, location and redundancy of repficas have great influence on availability and efficiency of the system. In order to improve availability and efficiency of the system, two phase de...In distributed parallel server system, location and redundancy of repficas have great influence on availability and efficiency of the system. In order to improve availability and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O(n), resource optimizing scale increases with the increase of READ count.展开更多
This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kut...This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.展开更多
This paper presents a \%k\|ε\|k\-p\% multi\|fluid model for simulating confined swirling gas\|solid two phase jet comprised of particle\|laden flow from a center tube and a swirling air stream entering the test secti...This paper presents a \%k\|ε\|k\-p\% multi\|fluid model for simulating confined swirling gas\|solid two phase jet comprised of particle\|laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two\|phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.展开更多
This paper investigates the development,the breakdown process,and the discharge path selection of the lightning discharges in two-phase mixtures(TPMs).13 kinds of solid-gas mixtures and 3 kinds of liquid-gas mixtures ...This paper investigates the development,the breakdown process,and the discharge path selection of the lightning discharges in two-phase mixtures(TPMs).13 kinds of solid-gas mixtures and 3 kinds of liquid-gas mixtures are employed to study effect of two phase mixtures on the selection of the discharge path under lightning impulses.Grain size effects are shown upon these experimental results.When the diameter of solid or liquid grains is less than about 10 μm,the discharge path does not select TPM but air.And the discharge path selects TPM when the diameter is greater than about 100 μm.And when the diameter is between about 10 μm and 100 μm,the discharge path selects TPM under negative lightning impulses,but it has a greater selection of air than TPMs under positive lightning impulses.Volume fraction and permittivity of solid/liquid can also influence the selection of the discharge path.展开更多
When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energ...When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.展开更多
In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases. and thus af...In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases. and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.展开更多
Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low co...Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.展开更多
In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm...In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.展开更多
The competitive iodide/iodate reaction scheme was used to ascertain the micromixing in the stirred solid-liquid systems. Two different glass beads from 450 to 1250 μm were tested. The effect of solid particles on rea...The competitive iodide/iodate reaction scheme was used to ascertain the micromixing in the stirred solid-liquid systems. Two different glass beads from 450 to 1250 μm were tested. The effect of solid particles on reaction selectivity with multiple impellers at different feed points has been investigated. It was confirmed that glass beads as a second phase were suitable for the study. The segregation index has changed significantly only for the medium-sized particles at relatively high solid holdups. The cloud formation was clearly observed for the medium-sized particles at a concentration of 12.12 wt. %. When feeding into the clear liquid above the cloud, the value of the segregation index increased significantly. However, in the presence of particles of 1-1.25 mm, the influence on the selectivity was negligible when the agitation speed was increased.展开更多
Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulen...Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulent mixing rate between subchannels. These models show that turbulent mixing rate is strongly dependent on flow regimes;their validity was examined against specific or limited experiments. It is vital to evaluate these models by comparing the predicted two phase turbulent mixing rate with available experimental data conducted for various subchannel geometries and operating conditions. This paper describes evaluation of different models for two phase turbulent mixing rate for both gas and liquid phase against large range of experimental data which are obtained from various subchannel geometries. The results indicate that there is large discrepancy between the predicted and experimental data for turbulent mixing rate. This paper provides important shortcoming of the previous work and need for the development of a new model. In the view of this, a two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent sub channels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data.展开更多
The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase...The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme.展开更多
To enhance the gas-liquid mixed transport performance of the first-stage centrifugal impeller of the multistage side-channel pump,a diagonal perforation oriented towards the exit is fabricated in the front shroud of t...To enhance the gas-liquid mixed transport performance of the first-stage centrifugal impeller of the multistage side-channel pump,a diagonal perforation oriented towards the exit is fabricated in the front shroud of the impeller.Based on the Euler-Euler non-homogeneous model and the SST k-ωturbulence model,the gas-liquid two-phase unsteady numerical simulation of the internal flow under various inlet gas volume fraction(IGVF)is conducted,the reliability of the simulation is verified through comparison with experiments.The results indicate that under the circumstances of high flowrate and high IGVF,the perforation design of the front shroud can increase the head of the centrifugal impeller by 4%–7%while the efficiency is slightly decreased under gas-liquid two phase flow.According to the internal flow analysis and Liutex vortex identification,the high-pressure and high-speed fluid in the front pump chamber is introduced into the impeller through the front shroud perforation,smashing and dispersing the originally aggregated bubble groups in the flow channel,causing the average pressure in the impeller to rise after the perforation,increasing the number and intensity of vortexes,significantly reducing the number and the accumulation area of bubbles,greatly reducing the air volume fraction of the impeller.The bubble blockage phenomenon in the flow channel is observably improved,and the gas-liquid mixed transport capacity of the centrifugal impeller is significantly enhanced,providing a theoretical basis for the optimization design of the gas-liquid two-phase flow of vane pumps.展开更多
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
基金Science and Technology on Electronic Test and Measurement Laboratory(No.9140C12040515X)
文摘The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.
基金This project is supported by Provincial Basic Application Granting of Jiangsu(No. B197063
文摘Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid two-phase turbulence can be well predicted by this model.
基金Supported by the Major State Basic Research Development Program of China(2011CB707304)the National Natural Science Foundation of China(51006016,51006017,51106018,51106019)
文摘Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique. The porous medium was a packed bed of glass beads. Spin echo multi sequence was used to measure the distribution of CO2 and water in the porous medium. The intensity images show that the fluid distribution is non-uniform due to its viscosity and pore structure of porous medium. The velocity distribution of fluids is calculated from the saturation of water and porosity of porous medium. The experimental results show that fluid velocities vary with time and position. The capillary dispersion rate donated the effects of capillary, which was largest at water saturations of 0.45. The displacement process is different between in BZ-02 and BZ-2. The final water residual saturation depends on permeability and porosity.
基金Supported by the National Natural Science F oundation of China( No.39770 2 0 0 )
文摘Hemoglobin was used as a mimetic enzyme for peroxidase to catalyze the oxidative reaction of o-phenylenediamine with H2O2 which functioned as an oxidant. The relationship between physicochemical properties of the intermediate and enzymatic activity of hemoglobin was studied. Since the solubility of the intermediate in the reaction is higher in butanol phase than in water phase, the intermediate itself diffused from the aqueous phase to the butanol phase. The experimental results showed that the rate of product and the stability of intermediate were associated with the temperature and the pH value of the buffer. The formation rate of intermediate and half-life period reveal the maximal in pH7, nevertheless, the whole rate of the catalytic reaction is the greatest in pH5, which the ratio of the initial rate in final product formation compared to that intermediate formation is the greatest.
基金supported by the China State Major Key Project for Basic Researches
文摘We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of the nonlinear system of equations admits a weak solution.
基金CAPES and Brazilian National Council of Research (CNPq) (Grant 407684/2013-1) for the financial support
文摘A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG(1500–6000 Da), p H(4.0–7.0), percentage of PEG(10.0–20.0 w/w), percentage of MgSO_4(8.0–16.0 w/w), percentage of the cell homogenate(10.0–20.0 w/w) and the percentage of MnSO_4(0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting(AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules.
基金Project“973",a national fundamental research development program
文摘Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.
文摘In distributed parallel server system, location and redundancy of repficas have great influence on availability and efficiency of the system. In order to improve availability and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O(n), resource optimizing scale increases with the increase of READ count.
文摘This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.
文摘This paper presents a \%k\|ε\|k\-p\% multi\|fluid model for simulating confined swirling gas\|solid two phase jet comprised of particle\|laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two\|phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.
基金Project Supported by National Natural Science Foundation of China(50237010).
文摘This paper investigates the development,the breakdown process,and the discharge path selection of the lightning discharges in two-phase mixtures(TPMs).13 kinds of solid-gas mixtures and 3 kinds of liquid-gas mixtures are employed to study effect of two phase mixtures on the selection of the discharge path under lightning impulses.Grain size effects are shown upon these experimental results.When the diameter of solid or liquid grains is less than about 10 μm,the discharge path does not select TPM but air.And the discharge path selects TPM when the diameter is greater than about 100 μm.And when the diameter is between about 10 μm and 100 μm,the discharge path selects TPM under negative lightning impulses,but it has a greater selection of air than TPMs under positive lightning impulses.Volume fraction and permittivity of solid/liquid can also influence the selection of the discharge path.
文摘When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.
基金This work is supported by State Key PrO-iect of Fundamental Research !(G1998061302) the National Natural Science Foundation
文摘In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases. and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.
文摘Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.
文摘In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.
文摘The competitive iodide/iodate reaction scheme was used to ascertain the micromixing in the stirred solid-liquid systems. Two different glass beads from 450 to 1250 μm were tested. The effect of solid particles on reaction selectivity with multiple impellers at different feed points has been investigated. It was confirmed that glass beads as a second phase were suitable for the study. The segregation index has changed significantly only for the medium-sized particles at relatively high solid holdups. The cloud formation was clearly observed for the medium-sized particles at a concentration of 12.12 wt. %. When feeding into the clear liquid above the cloud, the value of the segregation index increased significantly. However, in the presence of particles of 1-1.25 mm, the influence on the selectivity was negligible when the agitation speed was increased.
文摘Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulent mixing rate between subchannels. These models show that turbulent mixing rate is strongly dependent on flow regimes;their validity was examined against specific or limited experiments. It is vital to evaluate these models by comparing the predicted two phase turbulent mixing rate with available experimental data conducted for various subchannel geometries and operating conditions. This paper describes evaluation of different models for two phase turbulent mixing rate for both gas and liquid phase against large range of experimental data which are obtained from various subchannel geometries. The results indicate that there is large discrepancy between the predicted and experimental data for turbulent mixing rate. This paper provides important shortcoming of the previous work and need for the development of a new model. In the view of this, a two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent sub channels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data.
文摘The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.52279086).
文摘To enhance the gas-liquid mixed transport performance of the first-stage centrifugal impeller of the multistage side-channel pump,a diagonal perforation oriented towards the exit is fabricated in the front shroud of the impeller.Based on the Euler-Euler non-homogeneous model and the SST k-ωturbulence model,the gas-liquid two-phase unsteady numerical simulation of the internal flow under various inlet gas volume fraction(IGVF)is conducted,the reliability of the simulation is verified through comparison with experiments.The results indicate that under the circumstances of high flowrate and high IGVF,the perforation design of the front shroud can increase the head of the centrifugal impeller by 4%–7%while the efficiency is slightly decreased under gas-liquid two phase flow.According to the internal flow analysis and Liutex vortex identification,the high-pressure and high-speed fluid in the front pump chamber is introduced into the impeller through the front shroud perforation,smashing and dispersing the originally aggregated bubble groups in the flow channel,causing the average pressure in the impeller to rise after the perforation,increasing the number and intensity of vortexes,significantly reducing the number and the accumulation area of bubbles,greatly reducing the air volume fraction of the impeller.The bubble blockage phenomenon in the flow channel is observably improved,and the gas-liquid mixed transport capacity of the centrifugal impeller is significantly enhanced,providing a theoretical basis for the optimization design of the gas-liquid two-phase flow of vane pumps.
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.