In this research, two DoF five bar robot manipulator is controlled by using a human-machine interface program working in a computer. The human machine interface program is developed in Visual C#. Net environment after...In this research, two DoF five bar robot manipulator is controlled by using a human-machine interface program working in a computer. The human machine interface program is developed in Visual C#. Net environment after completing inverse kinematic analysis of the robot manipulator. Human machine interface in computer screen calculates two rotational joint variables for given positions of the robot end point. Then the computer program sends a data package containing these joint variables to Arduino microcontxoller. Arduino microcontxoller set the position of two servo motors according to calculated joint angles. Any position in workspace can be obtained by using the algorithm. The robot can follow traj ectories such as a line, a circle and a rectangle. Furthermore, a lot of patterns can be generated using function with variable radius and angle of rotation.展开更多
A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction a...A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.展开更多
A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth m...A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.展开更多
This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) air...This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.展开更多
Generally the underwater bio-robots take the tail fin as propulsor, and combined with pectoral fin they can manoeuvre agilely and control their position and movement at will. In nature, a lot of fishes realize to susp...Generally the underwater bio-robots take the tail fin as propulsor, and combined with pectoral fin they can manoeuvre agilely and control their position and movement at will. In nature, a lot of fishes realize to suspend itself in water to go forward and to move back up by the pectoral fin moving complexly. So that it is significant theoretically and valuable for practical application to investigate the propulsive principle and hydrodynamic performance of pectoral fin, and find the method utilizing the pectoral fin to manoeuvre the underwater bio-robot agilely. In this paper, a two degree of freedom (DoF) motion model is established for a rigid pectoral fin, and the hydrodynamic performances of the pectoral fin are studied by use of the pectoral fin propulsive experimental platform developed by Harbin Engineering University, simultaneously the hydrodynamic performance of the pectoral fin is analyzed when some parameters change. Then, through the secondary development of FLUENT (CFD code) software, the hydrodynamic performances of rigid pectoral fin in viscous flows are calculated and the results are compared with the latest experimental results. The research in this paper will provide the theoretical reference for the design of the manoeuvring system imitating pectoral fin, at the same time will become the foundation for the development of the small underwater bio-robot.展开更多
文摘In this research, two DoF five bar robot manipulator is controlled by using a human-machine interface program working in a computer. The human machine interface program is developed in Visual C#. Net environment after completing inverse kinematic analysis of the robot manipulator. Human machine interface in computer screen calculates two rotational joint variables for given positions of the robot end point. Then the computer program sends a data package containing these joint variables to Arduino microcontxoller. Arduino microcontxoller set the position of two servo motors according to calculated joint angles. Any position in workspace can be obtained by using the algorithm. The robot can follow traj ectories such as a line, a circle and a rectangle. Furthermore, a lot of patterns can be generated using function with variable radius and angle of rotation.
文摘A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.
基金National Natural Science Foundation under Grant No. 51179093National Basic Research Program of China under Grant No. 2011CB013602Program for New Century Excellent Talents in University under Grant No.NCET-10-0531
文摘A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.
基金Project supported by the National Natural Science Foundation of China(No.11172199)the KeyProgram of Tianjin Natural Science Foundation of China(No.11JCZDJC25400)
文摘This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.
基金supported by the National Natural Science Foundation of China (Grant Nos .50579007 and 50879014)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200802170010)
文摘Generally the underwater bio-robots take the tail fin as propulsor, and combined with pectoral fin they can manoeuvre agilely and control their position and movement at will. In nature, a lot of fishes realize to suspend itself in water to go forward and to move back up by the pectoral fin moving complexly. So that it is significant theoretically and valuable for practical application to investigate the propulsive principle and hydrodynamic performance of pectoral fin, and find the method utilizing the pectoral fin to manoeuvre the underwater bio-robot agilely. In this paper, a two degree of freedom (DoF) motion model is established for a rigid pectoral fin, and the hydrodynamic performances of the pectoral fin are studied by use of the pectoral fin propulsive experimental platform developed by Harbin Engineering University, simultaneously the hydrodynamic performance of the pectoral fin is analyzed when some parameters change. Then, through the secondary development of FLUENT (CFD code) software, the hydrodynamic performances of rigid pectoral fin in viscous flows are calculated and the results are compared with the latest experimental results. The research in this paper will provide the theoretical reference for the design of the manoeuvring system imitating pectoral fin, at the same time will become the foundation for the development of the small underwater bio-robot.