The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influence...The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.展开更多
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) p...The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.展开更多
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowe...In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.展开更多
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kin...A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.展开更多
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o...The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.展开更多
In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction r...In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.展开更多
RH vacuum degasser is a very important secondary refining device in the production of high quality steels. The flow field of molten steel in RH system plays a significant role in determining productivity of the equipm...RH vacuum degasser is a very important secondary refining device in the production of high quality steels. The flow field of molten steel in RH system plays a significant role in determining productivity of the equipment. The homogeneous model and VOF method were often used to predict the flow field in RH system, but these kinds of models simplified the interaction between gas bubbles and molten steel. In the present work, a numerical model of a whole RH system, including vacuum degasser, immersed legs and ladle,was built based on gas-liquid two-fluid model, and it could be used to analyze the interaction between argon bubbles and molten steel, to understand the effect of the bubble size to the flow field.展开更多
The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop...The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.展开更多
A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carr...A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and εequations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model.展开更多
Key words,: Two 1-D dynamical and isothermal models of cathode gas diffusion layer(GDL) with isobaric and non-isobaric operations for polymer electrolyte fuel cells(PEFCs) were developed and implemented in COMSOL...Key words,: Two 1-D dynamical and isothermal models of cathode gas diffusion layer(GDL) with isobaric and non-isobaric operations for polymer electrolyte fuel cells(PEFCs) were developed and implemented in COMSOL Multiphysics v3.5.The artificial diffusion coefficient was introduced as well to make the numerical computation be stable.In the non-isobaric model,the pressure of gas mixture was obtained by summing up the governing equations of gaseous components,instead of Navier-Stoks equation.Comparison of the two models were carried out with the steady-states and dynamical simulations under given conditions.The corresponding analysis based on the simulated results was also given simultaneously.This paper is contributed to finding the differences between the isobaric and non-isobaric operation in the two-phase model of cathode GDL.展开更多
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter...The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.展开更多
Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l...Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.展开更多
In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials out...In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements.展开更多
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluc...A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision. The proposed model is used to simulate gas-particle downer reactor flows. The computational results of both particle volume fraction and mean velocity are in agreement with the experimental results. After analyzing effects of empirical coefficient on prediction results, we can come to a conclusion that, inside the limit range of empirical coefficient, the predictions do not reveal a large sensitivity to the empirical coefficient in the downer reactor, but a relatively great change of the constants has important effect on the prediction.展开更多
Software reliability modeling and prediction are important issues during software development, especially when one has to reach a desired reliability prior to software release. Various techniques, both static and dyna...Software reliability modeling and prediction are important issues during software development, especially when one has to reach a desired reliability prior to software release. Various techniques, both static and dynamic, are used for reliability modeling and prediction in the context of software risk management. The single-phase Rayleigh model is a dynamic reliability model;however, it is not suitable for software release date prediction. We propose a new multi-phase truncated Rayleigh model and obtain parameter estimation using the nonlinear least squares method. The proposed model has been successfully tested in a large software company for several software projects. It is shown that the two-phase truncated Rayleigh model outperforms the traditional single-phase Rayleigh model in modeling weekly software defect arrival data. The model is useful for project management in planning release times and defect management.展开更多
Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turb...Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.展开更多
Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulen...Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulent mixing rate between subchannels. These models show that turbulent mixing rate is strongly dependent on flow regimes;their validity was examined against specific or limited experiments. It is vital to evaluate these models by comparing the predicted two phase turbulent mixing rate with available experimental data conducted for various subchannel geometries and operating conditions. This paper describes evaluation of different models for two phase turbulent mixing rate for both gas and liquid phase against large range of experimental data which are obtained from various subchannel geometries. The results indicate that there is large discrepancy between the predicted and experimental data for turbulent mixing rate. This paper provides important shortcoming of the previous work and need for the development of a new model. In the view of this, a two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent sub channels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data.展开更多
In this paper, we study the global existence and uniqueness of strong solutions for the Baer-Nunziato two-phase flow model in a bounded domain with a no-slip boundary. The global existence and uniqueness of strong sol...In this paper, we study the global existence and uniqueness of strong solutions for the Baer-Nunziato two-phase flow model in a bounded domain with a no-slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial value is near the equilibrium state in H<sup>2</sup> (Ω). Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.展开更多
In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remov...In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remove the effect of the background noise of images and to enhance the high-frequency component of the original image, image smoothing and image sharpening methods are introduced. Depending on the correct threshold, the image binarization processing is particularly useful for estimating stained non-wetting phase saturation. Calculated saturation data are compared with the measured saturation data during the two-phase flow experiment in an artificial steel planar porous media model. The results show that the calculated saturation data agree with the measured ones. With the help of an artificial steel planar porous media model, digital image processing is an accurate and simple method for obtaining the stained non-wetting phase saturation.展开更多
Based on continuum mechanics, we have developed a model for semi quantitative estimating effects of phase continuity on flow strength of two phase rocks including partially melted or crystallized rocks. Calculations o...Based on continuum mechanics, we have developed a model for semi quantitative estimating effects of phase continuity on flow strength of two phase rocks including partially melted or crystallized rocks. Calculations of the bulk flow strength of composite rocks as functions of the volume fraction, geometrical shape and continuity of the constitutive phases involve in numerically solving two non linear equations and thus are easy to be performed. The model has been justified by a good agreement between the predicted and measured results on diabase (64% clinopyroxene and 36% plagioclase) in the range of experimental temperatures and strain rates. It is believed that the present model could provide an approximate estimate for the rheological evolution of magmatic rocks during their life cycle of melting crystallization deformation.展开更多
基金Financial support from NSFC(Grant No.41572303,4151001059,41101008)Key Projects in the National Science & Technology Pillar Program(2014BAL05B01)CAS "Light of West China" Program
文摘The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.
文摘The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.
基金Supported by the National Natural Science Foundation of China(11171340)
文摘In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.
基金the Special Funds for Major State Basic Research of China(G-1999-0222-08)the National Natural Science Foundation of China(50376004)Ph.D.Program Foundation,Ministry of Education of China(20030007028)
文摘A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.
基金supported by the National Natural Science Foundation of China(11722104,11671150)supported by the National Natural Science Foundation of China(11571280,11331005)+3 种基金supported by the National Natural Science Foundation of China(11331005,11771150)by GDUPS(2016)the Fundamental Research Funds for the Central Universities of China(D2172260)FANEDD No.201315
文摘The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.
基金Graduate Research and Innovation Program in Jiangsu Province(KYZZ16_0286)
文摘In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.
文摘RH vacuum degasser is a very important secondary refining device in the production of high quality steels. The flow field of molten steel in RH system plays a significant role in determining productivity of the equipment. The homogeneous model and VOF method were often used to predict the flow field in RH system, but these kinds of models simplified the interaction between gas bubbles and molten steel. In the present work, a numerical model of a whole RH system, including vacuum degasser, immersed legs and ladle,was built based on gas-liquid two-fluid model, and it could be used to analyze the interaction between argon bubbles and molten steel, to understand the effect of the bubble size to the flow field.
文摘The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.
文摘A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and εequations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model.
基金National High Technology Reseach & Development Program of High Temperature PEM Fuel Cell,China (863 Program,No. 2008AA050403)Shanghai Pujiang Talent Plan,China (No. 08PJ1409)Chinese 111-Program for Energy-Saving and Environment-Friendly Automotives (No. B08019)
文摘Key words,: Two 1-D dynamical and isothermal models of cathode gas diffusion layer(GDL) with isobaric and non-isobaric operations for polymer electrolyte fuel cells(PEFCs) were developed and implemented in COMSOL Multiphysics v3.5.The artificial diffusion coefficient was introduced as well to make the numerical computation be stable.In the non-isobaric model,the pressure of gas mixture was obtained by summing up the governing equations of gaseous components,instead of Navier-Stoks equation.Comparison of the two models were carried out with the steady-states and dynamical simulations under given conditions.The corresponding analysis based on the simulated results was also given simultaneously.This paper is contributed to finding the differences between the isobaric and non-isobaric operation in the two-phase model of cathode GDL.
基金The project supported by the National Natural Science Foundation of China (50176022)
文摘The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
基金Chinese National Foundation of Natural Science-Key Projects(51339005)
文摘Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.
基金Project(2007CB714001) supported by the National Basic Research Program of China (973 Program)
文摘In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements.
基金Project supported by China Post-Doctoral Science Foundation(No.2004036239)
文摘A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision. The proposed model is used to simulate gas-particle downer reactor flows. The computational results of both particle volume fraction and mean velocity are in agreement with the experimental results. After analyzing effects of empirical coefficient on prediction results, we can come to a conclusion that, inside the limit range of empirical coefficient, the predictions do not reveal a large sensitivity to the empirical coefficient in the downer reactor, but a relatively great change of the constants has important effect on the prediction.
文摘Software reliability modeling and prediction are important issues during software development, especially when one has to reach a desired reliability prior to software release. Various techniques, both static and dynamic, are used for reliability modeling and prediction in the context of software risk management. The single-phase Rayleigh model is a dynamic reliability model;however, it is not suitable for software release date prediction. We propose a new multi-phase truncated Rayleigh model and obtain parameter estimation using the nonlinear least squares method. The proposed model has been successfully tested in a large software company for several software projects. It is shown that the two-phase truncated Rayleigh model outperforms the traditional single-phase Rayleigh model in modeling weekly software defect arrival data. The model is useful for project management in planning release times and defect management.
文摘Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.
文摘Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulent mixing rate between subchannels. These models show that turbulent mixing rate is strongly dependent on flow regimes;their validity was examined against specific or limited experiments. It is vital to evaluate these models by comparing the predicted two phase turbulent mixing rate with available experimental data conducted for various subchannel geometries and operating conditions. This paper describes evaluation of different models for two phase turbulent mixing rate for both gas and liquid phase against large range of experimental data which are obtained from various subchannel geometries. The results indicate that there is large discrepancy between the predicted and experimental data for turbulent mixing rate. This paper provides important shortcoming of the previous work and need for the development of a new model. In the view of this, a two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent sub channels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data.
文摘In this paper, we study the global existence and uniqueness of strong solutions for the Baer-Nunziato two-phase flow model in a bounded domain with a no-slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial value is near the equilibrium state in H<sup>2</sup> (Ω). Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
基金supported by the National Natural Science Foundation of China(Grant No51079043)the Special Fund for Public Welfare Industry of Ministry of Water Resources of China(Grants No200901064 and 201001020)the Research Innovation Program for College Graduates of Jiangsu Province(Grant No CXZZ11_0450)
文摘In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remove the effect of the background noise of images and to enhance the high-frequency component of the original image, image smoothing and image sharpening methods are introduced. Depending on the correct threshold, the image binarization processing is particularly useful for estimating stained non-wetting phase saturation. Calculated saturation data are compared with the measured saturation data during the two-phase flow experiment in an artificial steel planar porous media model. The results show that the calculated saturation data agree with the measured ones. With the help of an artificial steel planar porous media model, digital image processing is an accurate and simple method for obtaining the stained non-wetting phase saturation.
文摘Based on continuum mechanics, we have developed a model for semi quantitative estimating effects of phase continuity on flow strength of two phase rocks including partially melted or crystallized rocks. Calculations of the bulk flow strength of composite rocks as functions of the volume fraction, geometrical shape and continuity of the constitutive phases involve in numerically solving two non linear equations and thus are easy to be performed. The model has been justified by a good agreement between the predicted and measured results on diabase (64% clinopyroxene and 36% plagioclase) in the range of experimental temperatures and strain rates. It is believed that the present model could provide an approximate estimate for the rheological evolution of magmatic rocks during their life cycle of melting crystallization deformation.