The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault ene...The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault energy was raised with an average slope of 2 mJ/m2 per 1 wt% Cu.The Fe–20Mn–1.3C–3Cu steel exhibited superior tensile properties,with the ultimate tensile strength reached at 2.27 GPa and elongation up to 96.9% owing to the high strain hardening that occurred.To examine the mechanism of this high strain hardening,dislocation density determination by XRD was calculated.The dislocation density increased with the increasing strain,and the addition of Cu resulted in a decrease in the dislocation density.A comparison of the strain-hardening behavior of Fe–20Mn–1.3C and Fe–20Mn–1.3C–3Cu TWIP steels was made in terms of modified Crussard–Jaoul(C–J) analysis and microstructural observations.Especially at low strains,the contributions of all the relevant deformation mechanisms—slip,twinning,and dynamic strain aging—were quantitatively evaluated.The analysis revealed that the dislocation storage was the leading factor to the increase of the strain hardening,while dynamic strain aging was a minor contributor to strain hardening.Twinning,which interacted with the matrix,acted as an effective barrier to dislocation motion.展开更多
In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically ...In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically studied.The results show that a large number of {101^-2} twins disappear during recompression along the normal direction.Both the TB-dislocation interaction and TB-solute-dislocation interaction can greatly enhance the yield stress of the recompression along the normal direction(ND).However,the solute segregation at {1012} TBs with an intensive interaction with 〈a〉 dislocations cannot further enhance the yield stress of ND recompression.The samples with TB-dislocation interaction show a similar working hardening performance with that subjected to a TB-solute-dislocation interaction.Both the TB-dislocation interaction and TB-solute-dislocation interaction greatly reduce the value of work hardening peaks during a detwinning predominant deformation.展开更多
The microstructural changes in the machined surface layer of Ni-based super alloys essentially determine the final performance of the structural components of aerospace engines in which these alloys are used.In this w...The microstructural changes in the machined surface layer of Ni-based super alloys essentially determine the final performance of the structural components of aerospace engines in which these alloys are used.In this work,multiscale metallurgical observations using scanning electron microscopy,electron-backscatter diffraction microscopy,and transmission electron microscopy were conducted to quantitatively characterize the microstructure of the machined subsurface.Next,to elucidate the factors that affect the formation of the refinement microstructure,the distributions of the deformation parameters(strain,strain rate,and temperature) in the machined subsurface were analyzed.A dislocation–twin interaction dynamic recrystallization mechanism for grain refinement during machining of Inconel 718 is proposed.Furthermore,microhardness evolution induced by grain refinement in the machined surface is evaluated.The results suggest that the gradient microstructure and the work hardening can be optimized by controlling the cutting parameters during turning of Inconel 718.展开更多
Molecular statics was employed to simulate interaction between screw dislocation and twin boundaries(TB) in hexagonal close-packed zirconium. In the moving TB model, the interaction of a moving {10ˉ12} TB with a st...Molecular statics was employed to simulate interaction between screw dislocation and twin boundaries(TB) in hexagonal close-packed zirconium. In the moving TB model, the interaction of a moving {10ˉ12} TB with a static 1/311ˉ20{10ˉ10} screw dislocation was investigated. Twinning dislocation(TD) nucleation and movement play an important role in the interaction. The screw dislocation passes through the moving TB and changes to a basal one with a wide core. In the moving dislocation model, a moving 1/31120{1010} dislocation passes through the TB, converting into a basal one containing two partial dislocations and an extremely short stacking fault. If the TB changes to the {1011} one, the moving1/31120{1010} prismatic screw dislocation can be absorbed by the static TB and dissociated into two TDs on the TB. Along with the stress-strain relationship, results reveal the complicated mechanisms of interactions between the dislocation and TBs.展开更多
Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in ...Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.展开更多
{11-22}compression twin plays an important role in accommodating deformation along the c axis of HCP metals.However,the studies on the interface structure of{11-22}twin boundary(TB),especially the twin tip,and the cor...{11-22}compression twin plays an important role in accommodating deformation along the c axis of HCP metals.However,the studies on the interface structure of{11-22}twin boundary(TB),especially the twin tip,and the corresponding local stress release mechanism are still limited.This work studied the interface characters of{11-22}TB of a deformed pure titanium by transmission electron microscope.The{11-22}TB presented serrated character,consisting of coherent twin boundary(CTB)and(0002)_(T)//(11-2-2)_(M)or(11-2-2)_(T)//(0002)_(M)steps,and the twin tip was fully composed of the basal-pyramidal(BPy)and pyramidal-basal(PyB)steps.The twin tip presents asymmetric morphology and the step height at the twin tip is much larger than that away from the twin tip.Two types of local stress accommodation mechanisms were observed:zonal dislocation emission and hexagonal close packed structure to facecentered cubic structure transformation.The zonal dislocation was produced by the dissociation of the1/3<11-2-3>dislocation that was nucleated at the twin tip and the phase transformation was introduced by emission of Shockley partial dislocations from the{11-22}twin boundary.展开更多
Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile ex...Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile experiments,we report a strong size effect on mediating the twinning behaviors and twin boundary(TB)-dislocation interaction mechanisms in BCC iron(Fe)nanowires(NWs).There exists a critical diameter(d)of∼2.5 nm,above which the deformation twinning rather than dislocation slip dominates the plasticity.Unlike the traditional reflection TBs,the intermediate isosceles TBs are consis-tently observed as mediated by the 1/12<111>partial dislocations.Moreover,we uncover two distinct TB-related deformation mechanisms,including twin variant re-orientation and TB cracking for NWs with d<17 nm and d>17 nm,respectively.Further molecular dynamics and statics simulations provide the basic underlying mechanisms for size-dependent plasticity,which have been largely overlooked in previous experimental investigations.Our findings highlight the importance of grain size in mediating the deformation behaviors in Fe,serving as possible guidance for exploring single-crystalline and poly-crystalline Fe-based materials(e.g.steel)with optimized mechanical performance.展开更多
The impact abrasive wear behaviors of light-weight austenitic Fe-24Mn-7Al-1Csteel with increasing impact wear conditions were studied by comparing with the modified Hadfield(Mn13Cr2)steel.Wear tests were performed w...The impact abrasive wear behaviors of light-weight austenitic Fe-24Mn-7Al-1Csteel with increasing impact wear conditions were studied by comparing with the modified Hadfield(Mn13Cr2)steel.Wear tests were performed with the MLD-10 abrasive wear testing machine.Main parameters such as impact energy,impacting frequency and wear time were evaluated.To explore the abrasive wear behaviors under different impact energies,the parameters including mass loss,wear resistance and hardness were evaluated in detail.The microstructures of the steels were further analyzed using optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD).Results showed that the light-weight austenitic Fe-24Mn-7Al-1Csteel had a better wear resistance than Mn13Cr2 steel under the impact energy tested.The wear resistance of light-weight austenitic Fe-24Mn-7Al-1Csteel was about 1.09-1.17 times as high as that of Mn13Cr2 steel under low and medium impact energy(0.5-2.0J)conditions,and 1.41 times under high impact energy(4.0J)condition.In Mn13Cr2 steel,the evolution of dislocation substructure with increasing impact energy showed typical stacking fault,interaction of twins and dislocations,as well as mechanical twins.The high work-hardening rate in Fe-24Mn-7Al-1Csteel was caused by Taylor lattice and high density of dislocation tangles.展开更多
基金financially supported by the Major Project for Industry-University-Research of Fujian Province,China (No.2011H6012)the Natural Science Foundation of Fujian Province,China (No.2011J01292)the Key Project of Fujian Provincial Department of Science and Technology (No.2011H0001)
文摘The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault energy was raised with an average slope of 2 mJ/m2 per 1 wt% Cu.The Fe–20Mn–1.3C–3Cu steel exhibited superior tensile properties,with the ultimate tensile strength reached at 2.27 GPa and elongation up to 96.9% owing to the high strain hardening that occurred.To examine the mechanism of this high strain hardening,dislocation density determination by XRD was calculated.The dislocation density increased with the increasing strain,and the addition of Cu resulted in a decrease in the dislocation density.A comparison of the strain-hardening behavior of Fe–20Mn–1.3C and Fe–20Mn–1.3C–3Cu TWIP steels was made in terms of modified Crussard–Jaoul(C–J) analysis and microstructural observations.Especially at low strains,the contributions of all the relevant deformation mechanisms—slip,twinning,and dynamic strain aging—were quantitatively evaluated.The analysis revealed that the dislocation storage was the leading factor to the increase of the strain hardening,while dynamic strain aging was a minor contributor to strain hardening.Twinning,which interacted with the matrix,acted as an effective barrier to dislocation motion.
基金the financial support from the National Natural Science Foundation of China(Nos.51371203and 51571041)the National Key Basic Research Program of China(No.2013CB632204)
文摘In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically studied.The results show that a large number of {101^-2} twins disappear during recompression along the normal direction.Both the TB-dislocation interaction and TB-solute-dislocation interaction can greatly enhance the yield stress of the recompression along the normal direction(ND).However,the solute segregation at {1012} TBs with an intensive interaction with 〈a〉 dislocations cannot further enhance the yield stress of ND recompression.The samples with TB-dislocation interaction show a similar working hardening performance with that subjected to a TB-solute-dislocation interaction.Both the TB-dislocation interaction and TB-solute-dislocation interaction greatly reduce the value of work hardening peaks during a detwinning predominant deformation.
基金financial support from the National Natural Science Foundation of China (No.51425503)the Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment of China (No.2014ZX04012014)supported by a grant from the Taishan Scholar Foundation of Shandong province (No.TS20130922)
文摘The microstructural changes in the machined surface layer of Ni-based super alloys essentially determine the final performance of the structural components of aerospace engines in which these alloys are used.In this work,multiscale metallurgical observations using scanning electron microscopy,electron-backscatter diffraction microscopy,and transmission electron microscopy were conducted to quantitatively characterize the microstructure of the machined subsurface.Next,to elucidate the factors that affect the formation of the refinement microstructure,the distributions of the deformation parameters(strain,strain rate,and temperature) in the machined subsurface were analyzed.A dislocation–twin interaction dynamic recrystallization mechanism for grain refinement during machining of Inconel 718 is proposed.Furthermore,microhardness evolution induced by grain refinement in the machined surface is evaluated.The results suggest that the gradient microstructure and the work hardening can be optimized by controlling the cutting parameters during turning of Inconel 718.
基金Projects(11372032,11602015)supported by the National Natural Science Foundation of China
文摘Molecular statics was employed to simulate interaction between screw dislocation and twin boundaries(TB) in hexagonal close-packed zirconium. In the moving TB model, the interaction of a moving {10ˉ12} TB with a static 1/311ˉ20{10ˉ10} screw dislocation was investigated. Twinning dislocation(TD) nucleation and movement play an important role in the interaction. The screw dislocation passes through the moving TB and changes to a basal one with a wide core. In the moving dislocation model, a moving 1/31120{1010} dislocation passes through the TB, converting into a basal one containing two partial dislocations and an extremely short stacking fault. If the TB changes to the {1011} one, the moving1/31120{1010} prismatic screw dislocation can be absorbed by the static TB and dissociated into two TDs on the TB. Along with the stress-strain relationship, results reveal the complicated mechanisms of interactions between the dislocation and TBs.
基金Item Sponsored by Research Fund for the Central Universities of China(N130607002)National Natural Science Foundation of China(51174057,51274062)Research Fund for the Doctoral Program of Higher Education of China(20130042110040)
文摘Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.
基金supported by the National Natural Science Foundation of China(grant number 51828102)The Project of Innovation-driven Plan in Central South University(No.2019CX026)。
文摘{11-22}compression twin plays an important role in accommodating deformation along the c axis of HCP metals.However,the studies on the interface structure of{11-22}twin boundary(TB),especially the twin tip,and the corresponding local stress release mechanism are still limited.This work studied the interface characters of{11-22}TB of a deformed pure titanium by transmission electron microscope.The{11-22}TB presented serrated character,consisting of coherent twin boundary(CTB)and(0002)_(T)//(11-2-2)_(M)or(11-2-2)_(T)//(0002)_(M)steps,and the twin tip was fully composed of the basal-pyramidal(BPy)and pyramidal-basal(PyB)steps.The twin tip presents asymmetric morphology and the step height at the twin tip is much larger than that away from the twin tip.Two types of local stress accommodation mechanisms were observed:zonal dislocation emission and hexagonal close packed structure to facecentered cubic structure transformation.The zonal dislocation was produced by the dissociation of the1/3<11-2-3>dislocation that was nucleated at the twin tip and the phase transformation was introduced by emission of Shockley partial dislocations from the{11-22}twin boundary.
基金supported by the National Natural Science Foundation of China (Nos.52071237,12074290,51871169,52101021,and 12104345)the Natural Science Foundation of Jiangsu Province (No.BK20191187)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,the Science and Technology Program of Shenzhen (No.JCYJ20190808150407522)the China Postdoctoral Science Foundation (No.2019M652685).
文摘Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile experiments,we report a strong size effect on mediating the twinning behaviors and twin boundary(TB)-dislocation interaction mechanisms in BCC iron(Fe)nanowires(NWs).There exists a critical diameter(d)of∼2.5 nm,above which the deformation twinning rather than dislocation slip dominates the plasticity.Unlike the traditional reflection TBs,the intermediate isosceles TBs are consis-tently observed as mediated by the 1/12<111>partial dislocations.Moreover,we uncover two distinct TB-related deformation mechanisms,including twin variant re-orientation and TB cracking for NWs with d<17 nm and d>17 nm,respectively.Further molecular dynamics and statics simulations provide the basic underlying mechanisms for size-dependent plasticity,which have been largely overlooked in previous experimental investigations.Our findings highlight the importance of grain size in mediating the deformation behaviors in Fe,serving as possible guidance for exploring single-crystalline and poly-crystalline Fe-based materials(e.g.steel)with optimized mechanical performance.
文摘The impact abrasive wear behaviors of light-weight austenitic Fe-24Mn-7Al-1Csteel with increasing impact wear conditions were studied by comparing with the modified Hadfield(Mn13Cr2)steel.Wear tests were performed with the MLD-10 abrasive wear testing machine.Main parameters such as impact energy,impacting frequency and wear time were evaluated.To explore the abrasive wear behaviors under different impact energies,the parameters including mass loss,wear resistance and hardness were evaluated in detail.The microstructures of the steels were further analyzed using optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD).Results showed that the light-weight austenitic Fe-24Mn-7Al-1Csteel had a better wear resistance than Mn13Cr2 steel under the impact energy tested.The wear resistance of light-weight austenitic Fe-24Mn-7Al-1Csteel was about 1.09-1.17 times as high as that of Mn13Cr2 steel under low and medium impact energy(0.5-2.0J)conditions,and 1.41 times under high impact energy(4.0J)condition.In Mn13Cr2 steel,the evolution of dislocation substructure with increasing impact energy showed typical stacking fault,interaction of twins and dislocations,as well as mechanical twins.The high work-hardening rate in Fe-24Mn-7Al-1Csteel was caused by Taylor lattice and high density of dislocation tangles.