期刊文献+
共找到220篇文章
< 1 2 11 >
每页显示 20 50 100
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
1
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
2
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
在线阅读 下载PDF
Intrusion Detection Model with Twin Support Vector Machines 被引量:2
3
作者 何俊 郑世慧 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第4期448-454,共7页
Intrusion detection system(IDS) is becoming a critical component of network security. However,the performance of many proposed intelligent intrusion detection models is still not competent to be applied to real networ... Intrusion detection system(IDS) is becoming a critical component of network security. However,the performance of many proposed intelligent intrusion detection models is still not competent to be applied to real network security. This paper aims to explore a novel and effective approach to significantly improve the performance of IDS. An intrusion detection model with twin support vector machines(TWSVMs) is proposed.In this model, an efficient algorithm is also proposed to determine the parameter of TWSVMs. The performance of the proposed intrusion detection model is evaluated with KDD'99 dataset and is compared with those of some recent intrusion detection models. The results demonstrate that the proposed intrusion detection model achieves remarkable improvement in intrusion detection rate and more balanced performance on each type of attacks.Moreover, TWSVMs consume much less training time than standard support vector machines(SVMs). 展开更多
关键词 network security twin support vector machine(TWSVM) parameter determination
原文传递
Construction and application of pre-classified smooth semi-supervised twin support vector machine
4
作者 ZHANG Xiaodan QI Hongye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期564-572,共9页
In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabe... In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabeled samples. In S2TSVM, the addition of unlabeled samples can easily cause the classification hyper plane to deviate from the sample points. Then a centerdistance principle is proposed to pre-classify unlabeled samples, and a pre-classified S2TSVM (PS2TSVM) is proposed. Compared with S2TSVM, PS2TSVM not only improves the problem of the samples deviating from the classification hyper plane, but also improves the training speed. Then PS2TSVM is smoothed. After smoothing the model, the pre-classified smooth S2TSVM (PS3TSVM) is obtained, and its convergence is deduced. Finally, nine datasets are selected in the UCI machine learning database for comparison with other types of semi-supervised models. The experimental results show that the proposed PS3TSVM model has better classification results. 展开更多
关键词 SEMI-SUPERVISED twin support vector machine (TWSVM) pre-classified center-distance SMOOTH
在线阅读 下载PDF
A Probability Approach to Anomaly Detection with Twin Support Vector Machines
5
作者 聂巍 何迪 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第4期385-391,共7页
Classification of intrusion attacks and normal network flow is a critical and challenging issue in network security study. Many intelligent intrusion detection models are proposed, but their performances and efficienc... Classification of intrusion attacks and normal network flow is a critical and challenging issue in network security study. Many intelligent intrusion detection models are proposed, but their performances and efficiencies are not satisfied to real computer networks. This paper presents a novel effective intrusion detection system based on statistic reference model and twin support vector machines (TWSVMs). Moreover, a network flow feature selection procedure has been studied and implemented with TWSVMs. The performances of proposed system are evaluated through using the fifth international conference on knowledge discovery and data mining in 1999 (KDD'99) data set collected at MIT's Lincoln Labs and the results indicate that the proposed system is more efficient and effective than conventional support vector machines (SVMs) and TWSVMs. 展开更多
关键词 intrusion detection system (IDS) twin support vector machines (TWSVMs) PROBABILITY
原文传递
Traffic Sign Recognition Based on CNN and Twin Support Vector Machine Hybrid Model
6
作者 Yang Sun Longwei Chen 《Journal of Applied Mathematics and Physics》 2021年第12期3122-3142,共21页
With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly af... With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers. 展开更多
关键词 CNN twin support vector machine Wavelet Kernel Function Traffic Sign Recognition Transfer Learning
在线阅读 下载PDF
TWIN SUPPORT TENSOR MACHINES FOR MCS DETECTION 被引量:8
7
作者 Zhang Xinsheng Gao Xinbo Wang Ying 《Journal of Electronics(China)》 2009年第3期318-325,共8页
Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonab... Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper, we generalize the vector-based learning algorithm TWin Support Vector Machine(TWSVM) to the tensor-based method TWin Support Tensor Machines(TWSTM), which accepts general tensors as input.To examine the effectiveness of TWSTM, we implement the TWSTM method for Microcalcification Clusters(MCs) detection.In the tensor subspace domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM, the tensor version reduces the overfitting problem. 展开更多
关键词 Microcalcification Clusters (MCs) detection twin support Tensor machine (TWSTM) twin support vector machine (TWSVM) Receiver Operating Characteristic (ROC) curve
在线阅读 下载PDF
A robust twin support vector machine based on fuzzy systems
8
作者 Jianxiang Qiu Jialiang Xie +1 位作者 Dongxiao Zhang Ruping Zhang 《International Journal of Intelligent Computing and Cybernetics》 2024年第1期101-125,共25页
Purpose:Twin support vector machine(TSVM)is an effective machine learning technique.However,the TSVM model does not consider the influence of different data samples on the optimal hyperplane,which results in its sensi... Purpose:Twin support vector machine(TSVM)is an effective machine learning technique.However,the TSVM model does not consider the influence of different data samples on the optimal hyperplane,which results in its sensitivity to noise.To solve this problem,this study proposes a twin support vector machine model based on fuzzy systems(FSTSVM).Design/methodology/approach:This study designs an effective fuzzy membership assignment strategy based on fuzzy systems.It describes the relationship between the three inputs and the fuzzy membership of the sample by defining fuzzy inference rules and then exports the fuzzy membership of the sample.Combining this strategy with TSVM,the FSTSVM is proposed.Moreover,to speed up the model training,this study employs a coordinate descent strategy with shrinking by active set.To evaluate the performance of FSTSVM,this study conducts experiments designed on artificial data sets and UCI data sets.Findings:The experimental results affirm the effectiveness of FSTSVM in addressing binary classification problems with noise,demonstrating its superior robustness and generalization performance compared to existing learning models.This can be attributed to the proposed fuzzy membership assignment strategy based on fuzzy systems,which effectively mitigates the adverse effects of noise.Originality/value:This study designs a fuzzy membership assignment strategy based on fuzzy systems that effectively reduces the negative impact caused by noise and then proposes the noise-robust FSTSVM model.Moreover,the model employs a coordinate descent strategy with shrinking by active set to accelerate the training speed of the model. 展开更多
关键词 Fuzzy system Membership function twin support vector machine Pattern classification
在线阅读 下载PDF
Improved twin support vector machine 被引量:6
9
作者 TIAN YingJie JU XuChan +1 位作者 QI ZhiQuan SHI Yong 《Science China Mathematics》 SCIE 2014年第2期417-432,共16页
We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian ... We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian functions for the primal problems in the TWSVM,we get an improved dual formulation of TWSVM,then the resulted ITSVM algorithm overcomes the common drawbacks in the TWSVMs and inherits the essence of the standard SVMs.Firstly,ITSVM does not need to compute the large inverse matrices before training which is inevitable for the TWSVMs.Secondly,diferent from the TWSVMs,kernel trick can be applied directly to ITSVM for the nonlinear case,therefore nonlinear ITSVM is superior to nonlinear TWSVM theoretically.Thirdly,ITSVM can be solved efciently by the successive overrelaxation(SOR)technique or sequential minimization optimization(SMO)method,which makes it more suitable for large scale problems.We also prove that the standard SVM is the special case of ITSVM.Experimental results show the efciency of our method in both computation time and classification accuracy. 展开更多
关键词 support vector machine twin support vector machine nonparallel structural risk minimization CLASSIFICATION
原文传递
Quadratic Kernel-Free Least Square Twin Support Vector Machine for Binary Classification Problems 被引量:2
10
作者 Qian-Qian Gao Yan-Qin Bai Ya-Ru Zhan 《Journal of the Operations Research Society of China》 EI CSCD 2019年第4期539-559,共21页
In this paper,a new quadratic kernel-free least square twin support vector machine(QLSTSVM)is proposed for binary classification problems.The advantage of QLSTSVM is that there is no need to select the kernel function... In this paper,a new quadratic kernel-free least square twin support vector machine(QLSTSVM)is proposed for binary classification problems.The advantage of QLSTSVM is that there is no need to select the kernel function and related parameters for nonlinear classification problems.After using consensus technique,we adopt alternating direction method of multipliers to solve the reformulated consensus QLSTSVM directly.To reduce CPU time,the Karush-Kuhn-Tucker(KKT)conditions is also used to solve the QLSTSVM.The performance of QLSTSVM is tested on two artificial datasets and several University of California Irvine(UCI)benchmark datasets.Numerical results indicate that the QLSTSVM may outperform several existing methods for solving twin support vector machine with Gaussian kernel in terms of the classification accuracy and operation time. 展开更多
关键词 twin support vector machine Quadratic kernel-free Least square Binary classification
原文传递
基于数字孪生的高铁线路健康监测系统的研究
11
作者 曹峰 徐天航 《科技创新与生产力》 2025年第8期137-140,共4页
为解决传统线路监测方法存在的效率低、更新周期长、无法实时监测等问题,搭建了一套基于数字孪生的高铁线路健康监测系统,使用卷积神经网络有效提取线路结构和状况的图像特征,有助于系统分析线路图像数据,识别异常状态和问题点,并采用... 为解决传统线路监测方法存在的效率低、更新周期长、无法实时监测等问题,搭建了一套基于数字孪生的高铁线路健康监测系统,使用卷积神经网络有效提取线路结构和状况的图像特征,有助于系统分析线路图像数据,识别异常状态和问题点,并采用支持向量机和支持向量域算法,对所采集的线路数据进行分类和判断正常/故障,从而实现对高铁线路状态的精确监测和预警,提高了线路安全性和运行效率。 展开更多
关键词 数字孪生 线路监测 卷积神经网络 支持向量机 支持向量域
在线阅读 下载PDF
Least squares twin support vector machine with asymmetric squared loss
12
作者 Wu Qing Li Feiyan +2 位作者 Zhang Hengchang Fan Jiulun Gao Xiaofeng 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第1期1-16,共16页
For classification problems,the traditional least squares twin support vector machine(LSTSVM)generates two nonparallel hyperplanes directly by solving two systems of linear equations instead of a pair of quadratic pro... For classification problems,the traditional least squares twin support vector machine(LSTSVM)generates two nonparallel hyperplanes directly by solving two systems of linear equations instead of a pair of quadratic programming problems(QPPs),which makes LSTSVM much faster than the original TSVM.But the standard LSTSVM adopting quadratic loss measured by the minimal distance is sensitive to noise and unstable to re-sampling.To overcome this problem,the expectile distance is taken into consideration to measure the margin between classes and LSTSVM with asymmetric squared loss(aLSTSVM)is proposed.Compared to the original LSTSVM with the quadratic loss,the proposed aLSTSVM not only has comparable computational accuracy,but also performs good properties such as noise insensitivity,scatter minimization and re-sampling stability.Numerical experiments on synthetic datasets,normally distributed clustered(NDC)datasets and University of California,Irvine(UCI)datasets with different noises confirm the great performance and validity of our proposed algorithm. 展开更多
关键词 classification least SQUARES twin support vector machine ASYMMETRIC LOSS noise INSENSITIVITY
原文传递
Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
13
作者 Jia-Bin Zhou Yan-Qin Bai +1 位作者 Yan-Ru Guo Hai-Xiang Lin 《Journal of the Operations Research Society of China》 EI CSCD 2022年第1期89-112,共24页
In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the d... In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the data.In order to remove or greatly reduce the impact of noises,we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine(Lap-TSVM).A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine(IFLap-TSVM)is presented.Moreover,we extend the linear IFLap-TSVM to the nonlinear case by kernel function.The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classi-fier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization.Experiments with constructed artificial datasets,several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine(TSVM),intuitionistic fuzzy twin support vector machine(IFTSVM)and Lap-TSVM. 展开更多
关键词 twin support vector machine Semi-supervised classification Intuitionistic fuzzy Manifold regularization Noisy data
原文传递
Structural regularized twin support vector machine based on within-class scatter and between-class scatter
14
作者 Wu Qing Fu Yanlin +1 位作者 Fan Jiulun Ma Tianlu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第4期39-52,共14页
Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positi... Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positive and negative samples into the construction of two hyperplanes. However, it does not consider the total structure information of all the samples, which can substantially reduce its classification accuracy. In this paper, a new algorithm named structural regularized TWSVM based on within-class scatter and between-class scatter(WSBS-STWSVM) is put forward. The WSBS-STWSVM can make full use of the total within-class distribution information and between-class structure information of all the samples. The experimental results illustrate high classification accuracy and strong generalization ability of the proposed algorithm. 展开更多
关键词 generalization ability twin support vector machine within-class scatter between-class scatter
原文传递
Critic特征加权的多核最小二乘孪生支持向量机 被引量:1
15
作者 贺智鹏 吕莉 +1 位作者 陈娟 康平 《信息与控制》 北大核心 2025年第1期123-136,共14页
针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,... 针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,CMKLSTSVM)分类方法。首先,CMKLSTSVM使用Critic法赋予特征权重,反映不同特征间重要性差异,降低冗余特征及噪声样本影响。其次,根据混合多核学习策略构造了一种新的多核权重系数确定方法。该方法通过基核与理想核间的混合核对齐值判断核函数相似程度,确定权重系数,可以合理地组合多个核函数,最大程度地发挥不同核函数的映射能力。最后,采用加权求和的方式将特征权重与核权重进行统一并构造多核结构,使数据表达更全面,提高模型灵活性。在UCI数据集上的对比实验表明,CMKLSTSVM的分类准确率优于单核结构的SVM(support vector machine)算法,同时在高光谱图像上的对比实验反映了CMKLSTSVM对于包含噪声的真实分类问题的有效性。 展开更多
关键词 Critic权值法 混合多核学习方法 加权多核模型 孪生支持向量机 最小二乘损失函数
原文传递
基于孪生数据信息的提高石油采收率技术智能决策
16
作者 张娜 王凌旭 +4 位作者 姚谋 安杰 苏升帅 张敏 蒲景阳 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期40-45,58,共7页
针对当前提高石油采收率技术的传统人工筛选决策方法与现代数据分析决策方法各自的局限性,运用人工智能与数据分析技术,将领域专家知识和机器学习方法有机融合起来,建立基于孪生数据信息的提高石油采收率(EOR)智能决策系统。通过重构提... 针对当前提高石油采收率技术的传统人工筛选决策方法与现代数据分析决策方法各自的局限性,运用人工智能与数据分析技术,将领域专家知识和机器学习方法有机融合起来,建立基于孪生数据信息的提高石油采收率(EOR)智能决策系统。通过重构提高石油采收率数据信息并进行降噪提质,揭示不同EOR技术的驱油机理及油藏-流体适用条件;利用机器学习探究不同EOR油藏-流体参数权重,构建领域专家知识本体与机器学习推演的孪生数据信息融合与智能决策推理方法。通过Midway Sunset油藏案例验证了所建的基于孪生数据信息的EOR智能决策模型可靠性,可为老油田提高石油采收率技术快捷、科学、高效决策提供一定借鉴。 展开更多
关键词 采油技术智能决策 孪生数据信息 机器学习 支持向量机-SHAP 提高石油采收率
在线阅读 下载PDF
电梯曳引机轴承故障多分量多尺度诊断技术 被引量:1
17
作者 刘畅 许林 《微特电机》 2025年第4期61-65,70,共6页
研究电梯曳引机轴承故障多分量多尺度诊断技术,通过充分细化轴承振动信号,挖掘信号不同尺度层次上的特征,获取更加全面可靠的轴承故障诊断结果。采用基于局部均值分解(LMD)的多分量分析技术,分解电梯曳引机轴承振动信号,获取多个乘积函... 研究电梯曳引机轴承故障多分量多尺度诊断技术,通过充分细化轴承振动信号,挖掘信号不同尺度层次上的特征,获取更加全面可靠的轴承故障诊断结果。采用基于局部均值分解(LMD)的多分量分析技术,分解电梯曳引机轴承振动信号,获取多个乘积函数(PF)分量,经互相关系数完成PF分量筛选后,进行PF分量重构;采用基于多尺度排列熵(MPE)的多尺度分析方法,计算各个重构PF分量在不同尺度下的排列熵,将其作为电梯曳引机轴承故障诊断的特征,组建特征向量,输入到孪生支持向量机构建的故障诊断模型中,获取电梯曳引机轴承故障诊断结果。实验结果表明,该技术能够有效分解不同故障状态下的振动信号,获取PF分量并完成其筛选,可以精准诊断不同电梯曳引机轴承的故障类型。 展开更多
关键词 电梯曳引机 轴承故障 多分量 多尺度排列熵 孪生支持向量机
在线阅读 下载PDF
Twin-SVM和Twin-KSVC标志物检测与分类方法 被引量:2
18
作者 栾咏红 刘全 《计算机工程与设计》 北大核心 2016年第12期3306-3310,共5页
针对交通标志中禁令标志和指示标志的检测和分类难题,提出一种基于Twin-SVM和Twin-KSVC的交通标志检测与分类方法。对交通标志图像的红色、蓝色和亮度3个通道进行光照归一化处理;在这3个通道上提取Haar-like特征,构建特征向量;采用Twin-... 针对交通标志中禁令标志和指示标志的检测和分类难题,提出一种基于Twin-SVM和Twin-KSVC的交通标志检测与分类方法。对交通标志图像的红色、蓝色和亮度3个通道进行光照归一化处理;在这3个通道上提取Haar-like特征,构建特征向量;采用Twin-SVM方法进行交通标志检测过程的特征训练与验证,采用Twin-KSVC方法进行交通标志分类过程的特征训练与验证。实验采用实测数据对算法进行测试与评价,实验结果表明,该方法可以有效地检测和识别常见的20类禁令和指示交通标志。 展开更多
关键词 交通标志 交通标志检测 交通标志分类 支持向量机 HAAR-LIKE特征 成对支持向量机
在线阅读 下载PDF
基于多种群人工鱼群算法和模糊孪生支持向量机的频谱感知研究
19
作者 和聪平 鲁进 李丽文 《云南大学学报(自然科学版)》 北大核心 2025年第5期831-838,共8页
针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,... 针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,通过计算接收信号协方差矩阵的迹及其对角线外元素的均值,构建一个二维特征向量,由FTSVM进行训练识别;然后,使用样本的模糊隶属度调整了FTSVM超平面,从而使训练得到的模型更倾向于识别出初级用户存在的信号;最后,设计了多种群机制的改进人工鱼群算法,对频谱感知模型参数进行优化.仿真实验结果表明,在面临小样本数据集和低信噪比环境时,所提方法相较于其它的特征提取和SVM方法,在模型感知性能上实现了有效提升,−20 dB信噪比下检测概率达0.7以上.同时,优化算法的多种群机制缩短了模型的训练时间,相较于改进人工鱼群算法,训练时间缩短了约81%. 展开更多
关键词 频谱感知 模糊孪生支持向量机 协方差矩阵 改进人工鱼群算法
在线阅读 下载PDF
基于OCSVM和DDCSA的除尘设备故障检测方法
20
作者 田野 陈辉 +8 位作者 魏盈峰 赵凯 祝杰 夏源 王贵园 何其祎 周雯 王晗 徐澳 《计算机技术与发展》 2025年第8期214-220,共7页
除尘设备故障检测一直是一种常见的异常检测场景。然而,现有方法普遍存在数据样本不平衡、检测准确率低以及可视化效果不足等问题。为此,该文提出一种基于一类支持向量机(One-Class Support Vector Machine,OCSVM)和多样性检测克隆选择... 除尘设备故障检测一直是一种常见的异常检测场景。然而,现有方法普遍存在数据样本不平衡、检测准确率低以及可视化效果不足等问题。为此,该文提出一种基于一类支持向量机(One-Class Support Vector Machine,OCSVM)和多样性检测克隆选择算法(Diversity Detection Clone Selection Algorithm,DDCSA)的除尘设备故障检测方法。首先,采用三次样条插值法对数据进行缺失值补全,以确保数据的完整性。然后,针对数据样本不平衡问题,引入一类支持向量机进行异常检测。同时,针对OCSVM超参数选择困难的问题,提出一种多样性检测克隆选择算法对OCSVM的超参数进行调优。具体来说,针对传统克隆选择算法(Clone Selection Algorithm,CSA)克隆个体重复过多导致多样性不足的问题,提出对所有克隆个体均进行小幅变异并引入多样性检测机制,从而有效提升其在超参数选择上的能力,提高模型的检测准确度。最后,利用数字孪生技术将除尘设备和运行数据及其检测结果进行可视化展示,增强了直观性和可解释性。实验结果表明,该方法可以有效监测除尘设备的异常情况,与传统方法相比具有更高的监测准确度,且使用户能直观掌握环境状况,便于及时调控。 展开更多
关键词 三次样条插值法 数字孪生 多样性检测克隆选择算法 一类支持向量机 异常检测
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部