Sub-solvus recrystallization behavior of a second-generation single-crystal superalloy has been studied by transmission electron microcopy and scanning transmission electron microcopy. Surface local stress facilitated...Sub-solvus recrystallization behavior of a second-generation single-crystal superalloy has been studied by transmission electron microcopy and scanning transmission electron microcopy. Surface local stress facilitated cellular recrystallization accompanied with formation of twin structure and TCP phase of P during annealing at sub-solvus temperature of 1,100 °C. The precipitation of P phase is considered to be attributed to the coarsening of c0 phase in the recrystallized aggregates which lower the activation energy for atomic migration.展开更多
基金financially supported by National 973 Project of China(No.2015CB654902)National Nature Science Foundation of China(Nos.11374174 and 51390471)
文摘Sub-solvus recrystallization behavior of a second-generation single-crystal superalloy has been studied by transmission electron microcopy and scanning transmission electron microcopy. Surface local stress facilitated cellular recrystallization accompanied with formation of twin structure and TCP phase of P during annealing at sub-solvus temperature of 1,100 °C. The precipitation of P phase is considered to be attributed to the coarsening of c0 phase in the recrystallized aggregates which lower the activation energy for atomic migration.