Achieving industrial-level electrochemical CO_(2)reduction to formate remains a significant challenge due to limitations in catalyst selectivity and interfacial proton management at high current densities.In a recent ...Achieving industrial-level electrochemical CO_(2)reduction to formate remains a significant challenge due to limitations in catalyst selectivity and interfacial proton management at high current densities.In a recent study,Prof.Guo and colleagues report the development of Turingstructured electrocatalysts,which incorporate reaction-diffusion-inspired topologies to engineer mesoscale surface patterns.This design enables precise modulation of the interfacial microenvironment,enhancing CO_(2)activation and suppressing competing hydrogen evolution.The resulting catalysts achieve efficient and stable CO_(2)-to-formate conversion under industrially relevant conditions,offering a promising strategy for scalable carbon-neutral chemical production.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22209024)Tongcheng R&D Foundation(No.CPCIF-RA-0102)the State Key Laboratory of Advanced Fiber Materials,Donghua University
文摘Achieving industrial-level electrochemical CO_(2)reduction to formate remains a significant challenge due to limitations in catalyst selectivity and interfacial proton management at high current densities.In a recent study,Prof.Guo and colleagues report the development of Turingstructured electrocatalysts,which incorporate reaction-diffusion-inspired topologies to engineer mesoscale surface patterns.This design enables precise modulation of the interfacial microenvironment,enhancing CO_(2)activation and suppressing competing hydrogen evolution.The resulting catalysts achieve efficient and stable CO_(2)-to-formate conversion under industrially relevant conditions,offering a promising strategy for scalable carbon-neutral chemical production.