Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf...Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.展开更多
Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat...Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.展开更多
In order to obtain the surge margin of an aero-engine during its operation,an engine surge experiment is required.A multi-dimensional simulation method for an aero-engine is established in this paper.The simulation of...In order to obtain the surge margin of an aero-engine during its operation,an engine surge experiment is required.A multi-dimensional simulation method for an aero-engine is established in this paper.The simulation of a surge experiment using high-pressure air-injection is then carried out on a turbo-shaft engine to obtain the surge boundary using this method.More specifically,firstly,a body-force model is employed to calculate the compressor performance owing to its capability of capturing the main three-dimensional features of compressor surge and avoiding excessive simulation time required by the traditional fully-three-dimensional Reynolds Averaged Navier-Stokes(RANS)method.Then,a one-dimensional model combining a lumped-parameter plenum model is used for the combustor to account for the propagation of pressure waves and the heat-release process,and a zero-dimensional throttle model is used to mimic the choking effect at the turbine nozzle.Finally,the air-injection system is modeled by imposing an injection boundary condition,which can be used conveniently in changing injection parameters.Based on the established method,the influences of different test parameters,such as the air-injection location,the pressure,the orifice size,the number of injection orifices,and the injection time duration on the surge characteristics and boundary are further studied,which offer effective guidance to optimize an actual experimental design.展开更多
In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient....In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.展开更多
Control technologies are innovated to satisfy increasingly complicated control demands of gas turbine engines.In terms of limit protection control,a novel model-based multivariable limit protection control method,whic...Control technologies are innovated to satisfy increasingly complicated control demands of gas turbine engines.In terms of limit protection control,a novel model-based multivariable limit protection control method,which is achieved by adaptive command reconstruction and multiplecontrol loop selection and switch logic,is proposed in this paper to address the problem of balancing smaller thrust loss and safe operations by comparing with widely-used Min-Max logic.Five different combination modes of control loops,which represent the online control loop of last time instant and that of current time instant,is analyzed.Different command reconstructions are designed for these modes,which is based on static gain conversion of amplitude beyond limits by using an onboard model.The double-prediction based control loop selection and switch logic is developed to choose a control loop appropriately by comparing converted amplitude beyond limits regardless of one or more parameters tending to exceed limits.The proposed method is implemented in a twin-spool turbofan engine to achieve limit protection with direct thrust control,and the loss of thrust is improved by about 30% in comparison with the loss of thrust caused by Min-Max logic when limit protection control is activated,which demonstrates the effectiveness of the proposed method.展开更多
NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the...NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the robot, and the synchronized movements between the torch and the blade, have been developed for superior coating properties. Transferred arc treatment, providing a preheating and a cleaning of the substrate surface, enhances the adherence of the coatings to the substrate. The resulting LPPS coatings show dense and uniform characteristics with ideal hardness, and good corrosion resistance to cycle oxidation.展开更多
Time-triggered (TT) embedded software pattern is well accepted in aerospace industry for its high reliability. Fi-nite-state-machine (FSM) design method is widely used for its high efficiency and predictable behav...Time-triggered (TT) embedded software pattern is well accepted in aerospace industry for its high reliability. Fi-nite-state-machine (FSM) design method is widely used for its high efficiency and predictable behavior. In this paper, the time-triggered and state-machine combination software architecture is implemented for a 25 kg thrust micro turbine engine (MTE) used for unmanned aerial vehicle (UAV) system; also model-based-design development workflow for airworthiness software directive DO-178B is utilized. Experimental results show that time-triggered state-machine software architecture and development method could shorten the system development time, reduce the system test cost and make the turbine engine easily comply with the airworthiness rules.展开更多
Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to compon...Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to component degrada-tions that are caused by fouling and erosion.The proposed hybrid framework involves integrating both supervised recur-rent neural networks and unsupervised self-organizing maps methodologies,where the former is developed to extract ef-fective features that can be associated with the engine health condition and the latter is constructed for fault severity modeling and tracking of each considered degradation mode.Advantages of our proposed methodology are that it ac-complishes fault identification and health monitoring objectives by only discovering inherent health information that are available in the system I/O data at each operating point.The effectiveness of our approach is validated and justified with engine data under various degradation modes in compressors and turbines.展开更多
A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control syst...A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.展开更多
Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles, because of its better high-speed performance (than propeller propulsion) and higher propulsion effi...Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles, because of its better high-speed performance (than propeller propulsion) and higher propulsion efficiency (obviously than rockets). Windmill start is a common air-starting mode used in micro turbine engine. The windmill starting characteristics are important to the practical use of micro turbine engine. In this paper, the windmill starting characteristics research for a 12 cm diameter (MTE-D) micro turbine engine is carried out by experiment and numerical simulation. The characteristic of rotor mechanical losses at low-speed condition is stud- ied, and the engine common working line of windmill starting process is obtained. Based on the engine windmill characteristics, the propane ignition characteristics under different inflow conditions are researched, and the envelope of propane ignition and propane flameout is determined. The experimental research of fuel supply and ignition characteristics is completed, and the envelope of fuel supply and ignition is obtained. The windmill stage, propane ignition stage, fuel ignition stage and acceleration process from idling-speed to 80% full speed of MTE-D micro turbine engine is optimized, and the optimization windmill starting parameters are collected. The successful wind-mill starting experiment under this condition with engine speed up to 80% full speed indicates that these starting parameters are reasonable. All the starting parameters of MTE-D micro turbine engine obtained in this work are dimensionless parameters, and the conclusions obtained in this study have some reference to other micro turbine engines with the similar structural form and starting process.展开更多
The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing...The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing instrumentation and technology.This article begins with a comprehensive review of the existing available techniques that enable VHCF testing.Recent advances in ultrasonic fatigue testing(UFT)techniques are highlighted,containing their new capabilities and methods for single load,multiaxial load,variable amplitude fatigue,and combined cycle fatigue.New techniques for conducting UFT in high-temperature,humid environments,and corrosive environments are summarized.These developments in mechanical loading and environmental building techniques provide the possibility of laboratory construction for real service conditions of blade materials.New techniques that can be used for in situ monitoring of VHCF damage are summarized.Key issues in the UFT field are presented,and countermeasures are collated.Finally,the existing problems and future trends in the field are briefly described.展开更多
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random...Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.展开更多
A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the p...A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the past 65 plus years.Of particular interest are losses from the development of secondary flows from airfoil/endwall interactions.The most important of the airfoilAmdwall secondary flows are passage vortices,counter voitices,and corner vortices.The structure and development of these secondaiy flows are described as they affect aerodynamic perfonnance within and downstream of turbine passage flows in compressible,high speed flows with either subsonic or transonic Mach number distributions,as well as within low-speed,incompressible flows.Also discussed are methods of endwall contouring,and its consequences in regard to airfoil/endwall secondary flows.展开更多
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di...Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.展开更多
Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, an...Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, and the reliability analysis method based on load-life interference model and recurrence formula is constructed. In conjunction with finite element analysis (FEA) program, the reliability of an aero engine turbine disk under low cycle fatigue (LCF) condition has been analyzed. The results show the turbine disk is safety and the above reliability analysis methods are feasible.展开更多
Hydrogen has emerged as a promising clean energy source,leading to numerous recent efforts to integrate hydrogen into turbine engine applications[1].This integration has the potential to significantly enhance engine e...Hydrogen has emerged as a promising clean energy source,leading to numerous recent efforts to integrate hydrogen into turbine engine applications[1].This integration has the potential to significantly enhance engine efficiency while reducing carbon dioxide emissions[2].However,the degradation of nickel alloys induced by hydrogen has been well documented[3-7].Consequently,hydrogen-assisted failure of nickel alloys poses a critical concern for the design and safe operation of hydrogen-powered turbine engines.展开更多
The Efficient Global Optimization(EGO)algorithm has been widely used in the numerical design optimization of engineering systems.However,the need for an uncertainty estimator limits the selection of a surrogate model....The Efficient Global Optimization(EGO)algorithm has been widely used in the numerical design optimization of engineering systems.However,the need for an uncertainty estimator limits the selection of a surrogate model.In this paper,a Sequential Ensemble Optimization(SEO)algorithm based on the ensemble model is proposed.In the proposed algorithm,there is no limitation on the selection of an individual surrogate model.Specifically,the SEO is built based on the EGO by extending the EGO algorithm so that it can be used in combination with the ensemble model.Also,a new uncertainty estimator for any surrogate model named the General Uncertainty Estimator(GUE)is proposed.The performance of the proposed SEO algorithm is verified by the simulations using ten well-known mathematical functions with varying dimensions.The results show that the proposed SEO algorithm performs better than the traditional EGO algorithm in terms of both the final optimization results and the convergence rate.Further,the proposed algorithm is applied to the global optimization control for turbo-fan engine acceleration schedule design.展开更多
Modern aero and stationary gas turbine engines have been designed with much higher compressor-pressure ratios and thrust-weight ratios than earlier models,and these ratios are strongly influenced by the hot-running cl...Modern aero and stationary gas turbine engines have been designed with much higher compressor-pressure ratios and thrust-weight ratios than earlier models,and these ratios are strongly influenced by the hot-running clearances between the rotating and stationary components.The main benefit of reduction in the clearances is efficiency gains,resulting in lowered fuel consumption and polluting gas emissions,with ecological and economic advantages.However,at these undersized clearances,some rubbing interactions are unavoidable,which can be accommodated by applying Abradable Sealing Coatings(ASCs)on the stationary inner surface.This paper reviews the commercially available abradable materials for thermal spraying at various application positions and temperatures.Emphasis is placed on the abradability and wear mechanisms involved.In addition,considering the tendency of SiC/SiC ceramic matrix composites replacing superalloys as hot section components,the future prospect of ceramic abradables based on Environmental Barrier Coatings(EBCs)in turbine stages is summarized and a new concept of"self-degradable ceramics"based on the corrosive steam environment is proposed for the purpose of high-temperature fillerfree abradables.展开更多
文摘Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.
基金supported by the National Key Research and Development Program of China(2022YFB3809005)by SINOPEC(120060-6,121027,and 122042).
文摘Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.
基金supported by the National Science and Technology Major Project(Nos.J2019-I-0011 and 2017-II0004-0016)。
文摘In order to obtain the surge margin of an aero-engine during its operation,an engine surge experiment is required.A multi-dimensional simulation method for an aero-engine is established in this paper.The simulation of a surge experiment using high-pressure air-injection is then carried out on a turbo-shaft engine to obtain the surge boundary using this method.More specifically,firstly,a body-force model is employed to calculate the compressor performance owing to its capability of capturing the main three-dimensional features of compressor surge and avoiding excessive simulation time required by the traditional fully-three-dimensional Reynolds Averaged Navier-Stokes(RANS)method.Then,a one-dimensional model combining a lumped-parameter plenum model is used for the combustor to account for the propagation of pressure waves and the heat-release process,and a zero-dimensional throttle model is used to mimic the choking effect at the turbine nozzle.Finally,the air-injection system is modeled by imposing an injection boundary condition,which can be used conveniently in changing injection parameters.Based on the established method,the influences of different test parameters,such as the air-injection location,the pressure,the orifice size,the number of injection orifices,and the injection time duration on the surge characteristics and boundary are further studied,which offer effective guidance to optimize an actual experimental design.
基金Project(51776062) supported by the National Natural Science Foundation of ChinaProject(201208430262) supported by the National Studying Abroad Foundation Project of the China Scholarship Council
文摘In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.
基金supported by China Scholarship Council(No.201906830081)。
文摘Control technologies are innovated to satisfy increasingly complicated control demands of gas turbine engines.In terms of limit protection control,a novel model-based multivariable limit protection control method,which is achieved by adaptive command reconstruction and multiplecontrol loop selection and switch logic,is proposed in this paper to address the problem of balancing smaller thrust loss and safe operations by comparing with widely-used Min-Max logic.Five different combination modes of control loops,which represent the online control loop of last time instant and that of current time instant,is analyzed.Different command reconstructions are designed for these modes,which is based on static gain conversion of amplitude beyond limits by using an onboard model.The double-prediction based control loop selection and switch logic is developed to choose a control loop appropriately by comparing converted amplitude beyond limits regardless of one or more parameters tending to exceed limits.The proposed method is implemented in a twin-spool turbofan engine to achieve limit protection with direct thrust control,and the loss of thrust is improved by about 30% in comparison with the loss of thrust caused by Min-Max logic when limit protection control is activated,which demonstrates the effectiveness of the proposed method.
文摘NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the robot, and the synchronized movements between the torch and the blade, have been developed for superior coating properties. Transferred arc treatment, providing a preheating and a cleaning of the substrate surface, enhances the adherence of the coatings to the substrate. The resulting LPPS coatings show dense and uniform characteristics with ideal hardness, and good corrosion resistance to cycle oxidation.
文摘Time-triggered (TT) embedded software pattern is well accepted in aerospace industry for its high reliability. Fi-nite-state-machine (FSM) design method is widely used for its high efficiency and predictable behavior. In this paper, the time-triggered and state-machine combination software architecture is implemented for a 25 kg thrust micro turbine engine (MTE) used for unmanned aerial vehicle (UAV) system; also model-based-design development workflow for airworthiness software directive DO-178B is utilized. Experimental results show that time-triggered state-machine software architecture and development method could shorten the system development time, reduce the system test cost and make the turbine engine easily comply with the airworthiness rules.
基金The Natural Sciences and Engineering Research Council of Canada(NSERC)the Department of National Defence(DND)under the Discovery Grant and DND Supplemental Programs。
文摘Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to component degrada-tions that are caused by fouling and erosion.The proposed hybrid framework involves integrating both supervised recur-rent neural networks and unsupervised self-organizing maps methodologies,where the former is developed to extract ef-fective features that can be associated with the engine health condition and the latter is constructed for fault severity modeling and tracking of each considered degradation mode.Advantages of our proposed methodology are that it ac-complishes fault identification and health monitoring objectives by only discovering inherent health information that are available in the system I/O data at each operating point.The effectiveness of our approach is validated and justified with engine data under various degradation modes in compressors and turbines.
文摘A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.
文摘Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles, because of its better high-speed performance (than propeller propulsion) and higher propulsion efficiency (obviously than rockets). Windmill start is a common air-starting mode used in micro turbine engine. The windmill starting characteristics are important to the practical use of micro turbine engine. In this paper, the windmill starting characteristics research for a 12 cm diameter (MTE-D) micro turbine engine is carried out by experiment and numerical simulation. The characteristic of rotor mechanical losses at low-speed condition is stud- ied, and the engine common working line of windmill starting process is obtained. Based on the engine windmill characteristics, the propane ignition characteristics under different inflow conditions are researched, and the envelope of propane ignition and propane flameout is determined. The experimental research of fuel supply and ignition characteristics is completed, and the envelope of fuel supply and ignition is obtained. The windmill stage, propane ignition stage, fuel ignition stage and acceleration process from idling-speed to 80% full speed of MTE-D micro turbine engine is optimized, and the optimization windmill starting parameters are collected. The successful wind-mill starting experiment under this condition with engine speed up to 80% full speed indicates that these starting parameters are reasonable. All the starting parameters of MTE-D micro turbine engine obtained in this work are dimensionless parameters, and the conclusions obtained in this study have some reference to other micro turbine engines with the similar structural form and starting process.
基金funded by the National Science Fund for Distinguished Young Scholars(Grant No.51925504)the National Key R and D Program of China(Grant No.2018YFF01012400)+4 种基金the National Key R&D Program of China(Grant No.2022YFA1604000)the National Major Scientific Research Instrument Development Project(Grant No.52227810)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.52021003)the National Natural Science Foundation of China(Grant No.52075220)the Jilin Provincial Department of Science and Technology Fund Project(Grant No.20210101056JC)。
文摘The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing instrumentation and technology.This article begins with a comprehensive review of the existing available techniques that enable VHCF testing.Recent advances in ultrasonic fatigue testing(UFT)techniques are highlighted,containing their new capabilities and methods for single load,multiaxial load,variable amplitude fatigue,and combined cycle fatigue.New techniques for conducting UFT in high-temperature,humid environments,and corrosive environments are summarized.These developments in mechanical loading and environmental building techniques provide the possibility of laboratory construction for real service conditions of blade materials.New techniques that can be used for in situ monitoring of VHCF damage are summarized.Key issues in the UFT field are presented,and countermeasures are collated.Finally,the existing problems and future trends in the field are briefly described.
基金supports of the National Natural Science Foundation of China(Nos.12032008,12102080)the Fundamental Research Funds for the Central Universities,China(No.DUT23RC(3)038)are much appreciated。
文摘Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.
文摘A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the past 65 plus years.Of particular interest are losses from the development of secondary flows from airfoil/endwall interactions.The most important of the airfoilAmdwall secondary flows are passage vortices,counter voitices,and corner vortices.The structure and development of these secondaiy flows are described as they affect aerodynamic perfonnance within and downstream of turbine passage flows in compressible,high speed flows with either subsonic or transonic Mach number distributions,as well as within low-speed,incompressible flows.Also discussed are methods of endwall contouring,and its consequences in regard to airfoil/endwall secondary flows.
基金financially supported by the National Natural Science Foundation of China through Grant Nos.12372338 and U2241272the Natural Science Foundation of Shaanxi Province of China through Grant Nos.2023-JC-YB-352 and 2022JZ-20+1 种基金the Guangdong Basic and Applied Basic Research Foundation through Grant No.2023A1515011663the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University through Grant No.PF2023010。
文摘Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.
基金Supports provided by Aviation Basic Science Foundation(00B53010)Aerospace Science Foundation(N3CH0502)Shaanxi Province Natural Science Foundation(N3CS0501)are gratefully appreciated.
文摘Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, and the reliability analysis method based on load-life interference model and recurrence formula is constructed. In conjunction with finite element analysis (FEA) program, the reliability of an aero engine turbine disk under low cycle fatigue (LCF) condition has been analyzed. The results show the turbine disk is safety and the above reliability analysis methods are feasible.
基金supported by the Science Center for Gas Turbine Project(No.P2022-B-IV-009-002).
文摘Hydrogen has emerged as a promising clean energy source,leading to numerous recent efforts to integrate hydrogen into turbine engine applications[1].This integration has the potential to significantly enhance engine efficiency while reducing carbon dioxide emissions[2].However,the degradation of nickel alloys induced by hydrogen has been well documented[3-7].Consequently,hydrogen-assisted failure of nickel alloys poses a critical concern for the design and safe operation of hydrogen-powered turbine engines.
基金the financial support of the National Natural Science Foundation of China(Nos.52076180,51876176 and 51906204)National Science and Technology Major Project,China(No.2017-I0001-0001)。
文摘The Efficient Global Optimization(EGO)algorithm has been widely used in the numerical design optimization of engineering systems.However,the need for an uncertainty estimator limits the selection of a surrogate model.In this paper,a Sequential Ensemble Optimization(SEO)algorithm based on the ensemble model is proposed.In the proposed algorithm,there is no limitation on the selection of an individual surrogate model.Specifically,the SEO is built based on the EGO by extending the EGO algorithm so that it can be used in combination with the ensemble model.Also,a new uncertainty estimator for any surrogate model named the General Uncertainty Estimator(GUE)is proposed.The performance of the proposed SEO algorithm is verified by the simulations using ten well-known mathematical functions with varying dimensions.The results show that the proposed SEO algorithm performs better than the traditional EGO algorithm in terms of both the final optimization results and the convergence rate.Further,the proposed algorithm is applied to the global optimization control for turbo-fan engine acceleration schedule design.
基金Supported by the National Natural Science Foundation of China(Nos.U2241238,52275461,and 92060201)the Major Program(JD)of Hubei Province,China(No.2023BAA003)the Key Research and Development Program of Hubei Province,China(No.2023BAB107).
文摘Modern aero and stationary gas turbine engines have been designed with much higher compressor-pressure ratios and thrust-weight ratios than earlier models,and these ratios are strongly influenced by the hot-running clearances between the rotating and stationary components.The main benefit of reduction in the clearances is efficiency gains,resulting in lowered fuel consumption and polluting gas emissions,with ecological and economic advantages.However,at these undersized clearances,some rubbing interactions are unavoidable,which can be accommodated by applying Abradable Sealing Coatings(ASCs)on the stationary inner surface.This paper reviews the commercially available abradable materials for thermal spraying at various application positions and temperatures.Emphasis is placed on the abradability and wear mechanisms involved.In addition,considering the tendency of SiC/SiC ceramic matrix composites replacing superalloys as hot section components,the future prospect of ceramic abradables based on Environmental Barrier Coatings(EBCs)in turbine stages is summarized and a new concept of"self-degradable ceramics"based on the corrosive steam environment is proposed for the purpose of high-temperature fillerfree abradables.