期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
In situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series
1
作者 Yu Deng Yan Liu +3 位作者 Yonghui Deng Jinsheng Cheng Yidong Zou Wei Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期502-507,共6页
Benzene series as highly toxic gases have inevitably entered human life and produce great threat to human health and ecological environment,and thus it is distinctly meaningful to monitor benzene series with quickly,r... Benzene series as highly toxic gases have inevitably entered human life and produce great threat to human health and ecological environment,and thus it is distinctly meaningful to monitor benzene series with quickly,real-time and efficient technique.Herein,novel sulfur-doped mesoporous WO_(3)materials were synthesized via classical in-situ solvent evaporation induced co-assembly strategy combined with doping engineering,which possessed highly crystallized frameworks,high specific surface area(40.9–63.8 m^(2)/g)and uniform pore size(~18 nm).Benefitting from abundant oxygen vacancy and defects via S-doping,the tailored mesoporous S/m WO_(3)exhibited excellent benzene sensing performance,including high sensitivity(50 ppm vs.48),low detection limit(ca.500 ppb),outstanding selectivity and favorable stability.In addition,the reduction of band gap resulted from S-doping promotes the carrier migration in the sensing materials and the reaction at the gas–solid sensing interfaces.It provides brand-new approach to design sensitive materials with multiple reaction sites. 展开更多
关键词 Mesoporous materials Benzene series tungsten oxides Sulfur doping Gas sensor
原文传递
Hydrogen Reduction of Tungsten Oxides Part Ⅰ:Reduction of WO_(2.90),W_(20)O_(58) and WO_3 被引量:1
2
作者 Tang Xinhe Cao Rongjiang Chen Hongyu Sun Xu General Research Institute for Non-ferrous Metals,Beijing Tang Xinhe now works in Institute of Chemical Metallurgy,Academia Sinica,P.O.Box 353,Beijing,China. 《Rare Metals》 SCIE EI CAS CSCD 1989年第4期1-5,共5页
The hydrogen reduction of tungsten oxides WO_(2.90),W_(20)O_(58) and WO_3 were directly studied using high temperature X-ray diffraction analysis.The differences between tetragonal WO_(2.90) and monoclinic W_(20)O_(58... The hydrogen reduction of tungsten oxides WO_(2.90),W_(20)O_(58) and WO_3 were directly studied using high temperature X-ray diffraction analysis.The differences between tetragonal WO_(2.90) and monoclinic W_(20)O_(58) were discussed.Pure β-W was obtained from oxide WO_(2.90),while there appears small amount of WO_2 during the reduction of W_(20)O_(58) to β-W. 展开更多
关键词 HZ Reduction of WO Hydrogen Reduction of tungsten oxides Part
在线阅读 下载PDF
Hydrogen Reduction of Tungsten Oxides Part Ⅱ:Reduction of WO_(2.72) and WO_2,Transformation of β-W 被引量:1
3
作者 Tang Xinhe Cao Rongjiang Chen Hongyu Sun Xu General Research Institute for Non-ferrous Metals,Beijing 《Rare Metals》 SCIE EI CAS CSCD 1990年第1期5-9,共5页
The hydrogen reduction of tungsten oxides WO_(272)and WO_2 were studied directly using high-temperature X-ray diffraction analysis,The pure β-W was obtained from the reduction of WO_(272)The transformation of β-W to... The hydrogen reduction of tungsten oxides WO_(272)and WO_2 were studied directly using high-temperature X-ray diffraction analysis,The pure β-W was obtained from the reduction of WO_(272)The transformation of β-W to x-W was also studied in both hydrogen and nitrogen.The forming condition of β-W from WO_2 was discussed.Finally.a complete schematic diagram of reduction of tungsten oxides was given in this paper. 展开更多
关键词 and WO2 Transformation of Hydrogen Reduction of tungsten oxides Part Reduction of WO
在线阅读 下载PDF
Towards an optical coupler using fine-wire:a study of the photovoltaic effect of a heterojunction formed in a single fine-wire of tungsten oxides
4
作者 陈尚辉 陈建 +1 位作者 邓少芝 许宁生 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期557-562,共6页
Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power... Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power transmission, and report on the realization of a heterojunction formed between WO2 and WO3 in a fine-wire having a diameter on the micrometer scale. Using a laser beam of 514.5 nm as a signal source, the WO2-WO3 heterojunction yields a maximum output power of up to 37.4 pico watt per heterojunction. Fast responses (less than a second) of both photovoltaic voltage and current are also observed. In addition, we demonstrate that it is a simple and effective way to adapt a commercial Raman spectrometer for the combined functions of fabrication, material characterization and photovottaic measurement of an optical signal coupler and optical power transmitter based on a fine-wire. Our results show an attractive perspective of developing nanowire or fine-wire elements for coupling optical signals into and for powering a nanoelectronic or nano-optoelectronic integrated circuit that works under the condition of preventing it from directly electrically connecting with the optical coupler. 展开更多
关键词 optical coupler HETEROJUNCTION tungsten oxide fine-wire PHOTOVOLTAIC
原文传递
Quantifying structural distortion manipulation for desired perovskite phase:PartⅠ.Paradigm demonstration in tungsten oxides 被引量:1
5
作者 Cheng Fang Hong Wang Siqi Shi 《Journal of Materiomics》 SCIE CSCD 2024年第2期293-303,共11页
Slight distortions can cause dramatic changes in the properties of crystalline perovskite materials and their derivatives.Due to the numerous types of distortions and unclarified distortion-structure relations,a quant... Slight distortions can cause dramatic changes in the properties of crystalline perovskite materials and their derivatives.Due to the numerous types of distortions and unclarified distortion-structure relations,a quantitative distortion manipulation for the desired crystalline phase of perovskite materials suitable for various application remains challenging.Here,by establishing parameter sets to systematically describe the types,magnitudes and positional relations involved in distortions,we are able to interpret the structural regulations and manipulation strategies in 7 reported crystal systems.Through the con-struction of distortion-phase-property functional curves,we further propose a paradigm to quantify the structural distortion manipulation for desired perovskite phases.Using the example of perovskite-like tungsten oxides,we successfully quantify their volume shrinkage and symmetry increase during lith-iation.This work verifies that the complicated research and development of perovskite materials can be simplified into a mathematical problem solving process,which will inspire researchers with different backgrounds to participate,especially mathematicians and computer scientists. 展开更多
关键词 Distortion manipulation Distortion-phase-property function Coordination polyhedron tungsten oxide PEROVSKITE
原文传递
Atomic tailoring-induced deficiency in tungsten oxides for high-performance energy-related devices 被引量:1
6
作者 Jing-Huang Lin Yao-Tian Yan +1 位作者 Jun-Lei Qi Chen-Yang Zha 《Tungsten》 EI CSCD 2024年第2期269-277,共9页
Nowadays,tungsten oxides,as a typical transition metal oxide,are widely and intensively investigated owing to their excellent material properties and device properties.Controlling oxygen defi ciency in tungsten oxides... Nowadays,tungsten oxides,as a typical transition metal oxide,are widely and intensively investigated owing to their excellent material properties and device properties.Controlling oxygen defi ciency in tungsten oxides is typically the key to enhance their performances for a variety of critical technological applications.With a gradual increase of oxygen defi ciency,various non-stoichiometric tungsten oxides can be formed by re-adjustment of the atomic arrangement,which exhibits superior performances than their traditional stoichiometric counterparts.This review mainly focuses on the recent advances in oxygen-defi cient tungsten oxides from the point of atomic structures,including the forming mechanism of non-stoichiometric tungsten oxides and the superiority of these oxygen-defi cient tungsten oxides in energy-related devices.Finally,the challenge and perspective of oxygen-defi cient tungsten oxides are also discussed. 展开更多
关键词 Oxygen defi ciency tungsten oxide Atomic structures CATALYST Storage
原文传递
Shock-resistant wearable pH sensor based on tungsten oxide aerogel
7
作者 Chen-Xin Wang Guang-Lei Li +6 位作者 Yu Hang Dan-Feng Lu Jian-Qi Ye Hao Su Bing Hou Tao Suo Dan Wen 《Chinese Chemical Letters》 2025年第7期266-270,共5页
Wearable sensors are pivotal for point-of-care diagnostics,yet their application in extreme conditions is rarely conducted.In this work,we present a wearable pH sensor using tungsten oxide aerogel(TOA)as the sensing m... Wearable sensors are pivotal for point-of-care diagnostics,yet their application in extreme conditions is rarely conducted.In this work,we present a wearable pH sensor using tungsten oxide aerogel(TOA)as the sensing material.With the advantages of large specific surface area,high porosity and interconnected network structures,TOA not only provides excellent pH sensing performance but also demonstrates remarkable structural and sensing stability.The potentiometric pH sensor exhibits a high sensitivity(−63.70 mV/pH),a low detectable limit(0.05)and a superior stability(maintained over 50,000 s).Integrated with a Bluetooth module,the wearable sensor achieves non-invasive and real-time pH monitoring on the human skin with minimal deviation(1.91%)compared to the commercial pH meter.More importantly,the anti-impact behaviors of the TOA-based sensing materials and chip,along with the pH wearable sensor on a pig exhibit an outstanding shock-resistance ability,with variations no more than 7.17%under an impact of 118.38 kPa.Therefore,this study shows great promise for the aerogel-based personalized health management in the extreme environment. 展开更多
关键词 Wearable pH sensor tungsten oxide aerogel Shock-resistance High stability Potentiometric method
原文传递
Mechanism, modification and stability of tungsten oxide-based electrocatalysts for water splitting: A review
8
作者 Shuang Yu Xiaomei Yu +4 位作者 Huijing Yang Feng Li Songjie Li Young Soo Kang Jin You Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期23-49,共27页
Electrocatalysis plays a crucial role in the field of clean energy conversion and provides essential support for the development of eco-friendly technology. There is a pressing need for electrocatalysts in renewable e... Electrocatalysis plays a crucial role in the field of clean energy conversion and provides essential support for the development of eco-friendly technology. There is a pressing need for electrocatalysts in renewable energy systems that exhibit exceptional activity, selectivity, stability, and economic viability. The utilization of metal oxides as electrocatalysts for the process of water splitting has made substantial progress in both theoretical and practical aspects and has emerged as a widely explored field of research. Tungsten oxides(WO_(x)) have attracted much attention and are regarded as a highly promising electrocatalytic material due to their exceptional electrocatalytic activity, cost-effectiveness, and ability to withstand extreme conditions. This review introduces the fundamental mechanism of WOx-based electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction, providing a comprehensive overview of recent research advancements in their modification. Factors contributing to the catalytic activity and stability of WOxare explored, highlighting their potential for industrial applications. The aim herein is to provide guidelines for the design and fabrication of WOx-based electrocatalysts, thereby facilitating further research on their mechanistic properties and stability improvements in water splitting. 展开更多
关键词 Non-stoichiometric tungsten oxide Electrocatalytic water splitting MODIFICATION STABILITY Oxygen vacancies
在线阅读 下载PDF
Tungsten carbide-reduced graphene oxide intercalation compound as co-catalyst for methanol oxidation 被引量:3
9
作者 施梅勤 章文天 +2 位作者 李影影 褚有群 马淳安 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1851-1859,共9页
Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The met... Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The metatungstate ion,[H2W(12)O(40)]^6-,is assembled on thiourea-modified graphene oxide(GO) by an impregnation method.The WC NPs,with a mean diameter of 1.5 nm,are obtained through a process whereby ammonium metatungstate first turns to WS2,which then forms an intercalation compound with RGO before growing,in situ,to WC NPs.The Pt/WC-RGO electrocatalysts are fabricated by a microwave-assisted method.The intimate contacts between Pt,WC,and RGO are confirmed by X-ray diffraction,scanning electron microscope,transmission electron microscope,and Raman spectroscopy.For methanol oxidation,the Pt/WC-RGO electrocatalyst exhibited an electrochemical surface area value of 246.1 m^2/g Pt and a peak current density of1364.7 mA/mg Pt,which are,respectively,3.66 and 4.77 times greater than those of commercial Pt/C electrocatalyst(67.2 m^2/g Pt,286.0 mA/mg Pt).The excellent CO-poisoning resistance and long-term stability of the electrocatalyst are also evidenced by CO stripping,chronoamperometry,and accelerated durability testing.Because Pt/WC-RGO has higher catalytic activity compared with that of commercial Pt/C,as a result of its intercalated structure and synergistic effect,less Pt will be required for the same performance,which in turn will reduce the cost of the fuel cell.The present method is facile,efficient,and scalable for mass production of the nanomaterials. 展开更多
关键词 tungsten carbide-reduced graphene oxide Intercalation compound THIOUREA ANCHORING Methanol oxidation
在线阅读 下载PDF
Understanding the role of tungsten on Pt/CeO_(2)for vinyl chloride catalytic combustion 被引量:6
10
作者 Qifeng Zhang Zhengbo Zhou +5 位作者 Tian Fang Han Gu Yanglong Guo Wangcheng Zhan Yun Guo Li Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第9期1462-1470,I0005,共10页
Spherical CeO_(2)synthesized by the hydrothermal process was used as support to prepare Pt/WO_(3)/CeO_(2),and the effects of tungsten(W)contents on activity,stability and polychlorinated by-products were investigated ... Spherical CeO_(2)synthesized by the hydrothermal process was used as support to prepare Pt/WO_(3)/CeO_(2),and the effects of tungsten(W)contents on activity,stability and polychlorinated by-products were investigated to understand the role of W for vinyl chloride(VC)catalytic oxidation.The introduction of12 wt%W to Pt/CeO_(2)(P12 WC)exhibits the highest catalytic activity with 90%conversion of VC at 250℃,meanwhile the stability improves and the polychlorinated by-products in the tail gas significantly decrease due to the removal of dissociated Cl species in the formation of HCl.The beneficial effects of W on Pt/CeO_(2)are closely related to the chemical state of Pt,redox and surface acid sites distribution.The doped W not only makes Pt disperse evenly on the support with the high valence,but also weakens the interaction between Pt and CeO_(2)by the formation of Pt-O-W and Pt-O-W-O-Ce species,which facilitates oxygen mobility.In addition,the modification of W species also significantly increases the surface acidity amount and changes the distribution of acid sites. 展开更多
关键词 tungsten oxides Vinyl chloride Catalytic oxidation Pt/CeO_(2) By-products Rare earths
原文传递
Electrochromic Properties of WO_(3) Nanorod Films Prepared by Hydrothermal Method
11
作者 WU Jun ZHAO Lei +3 位作者 YANG Cuina ZHANG Yuhua SUN Shengfei YAO Lu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第3期682-692,共11页
This paper adopted the hydrothermal method to prepare tungsten oxide(WO_(3))nanorod films and studied the effects of precursor solution concentration(0.02,0.03,0.06 mol/L peroxytungstic acid)and annealing temperature(... This paper adopted the hydrothermal method to prepare tungsten oxide(WO_(3))nanorod films and studied the effects of precursor solution concentration(0.02,0.03,0.06 mol/L peroxytungstic acid)and annealing temperature(200,300,400℃)on their electrochromic properties.The microstructure characterization of WO_(3) films were performed using scanning electron microscope(SEM),X-ray diffraction(XRD),and transmission electron microscope(TEM),and their electrochromic properties were tested by combining an electrochemical workstation with an ultraviolet-visible spectrophotometer.The results showed that the precursor solution concentration directly affected the thickness(290,560,990 nm)and microstructure of WO_(3) films,significantly impacting their electrochromic properties.However,the annealing temperature had a negligible effect.As the precursor solution concentration increased,the optical modulation of WO_(3) films gradually decreased,reaching 51.1%,43.8%,and 35.1%,respectively.The switching time first increased and then stabilized,with coloring times of 7.3,7.7,and 7.7 s,respectively,and bleaching times of 3.8,6.5,and 6.5 s,respectively.The coloration efficiency gradually increased but the increase was relatively small,reaching 41.8,44.4,and 44.8 cm^(2)/C,respectively.Moreover,the cycling stability of WO_(3) films was poor,with the ratios of the final value of optical modulation to the initial value 0.33,0.26,and 0.34,respectively.Additionally,there were bigger differences in the bleached state transmittance,while the colored state transmittance showed smaller variations.However,the former has better cycling stability than the latter.In summary,to obtain better electrochromic properties,the thickness of WO_(3) films should not exceed 290 nm. 展开更多
关键词 ELECTROCHROMISM tungsten oxide(WO_(3)) NANORODS film thickness annealing temperature hydrothermal method
原文传递
Preparation of nano-sized tungsten carbide via fluidized bed 被引量:9
12
作者 Feng Pan Zhan Du +4 位作者 Shaofu Li Jun Li Meiju Zhang Maoqiao Xiang Qingshan Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期923-932,共10页
Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungs... Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungsten oxide(WO2.72)as the raw material,a fluidized bed as the reactor,and CO as the carbonization gas.The relationship between particle sizes and reaction temperatures,residence times,atmospheres has been investigated systematically.In addition,the physical–chemical indexes(such as residual oxygen,total carbon and free carbon)of the products were measured.The results indicated that the particle size of WC increased with the increase of temperature from 800 to 950°C.As the residence time increased,the particle size decreased gradually,and then increased due to slight sintering.The introduction of hydrogen reduced the carbonization rate,and is not beneficial to obtaining nano-sized WC.Products that satisfy the standard were obtained when WO2.72 reacted with CO at 850°C,900°C and 950°C for 3.0 h,2.5 h and 2.0 h,respectively.The particle sizes of the three samples calculated from the specific surface area were 46.4 nm,53.2 nm and 52.1 nm,respectively. 展开更多
关键词 NANOPARTICLES Violet tungsten oxide Nano tungsten carbide FLUIDIZED-BED Reduction-carbonization Process control
在线阅读 下载PDF
Sol-gel-based porous Ti-doped tungsten oxide films for high-performance dual-band electrochromic smart windows 被引量:7
13
作者 Qiancheng Meng Sheng Cao +6 位作者 Juquan Guo Qingke Wang Ke Wang Tao Yang Ruosheng Zeng Jialong Zhao Bingsuo Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期137-143,I0004,共8页
Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current st... Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current strategy for building DESWs is to screen materials for composite or prepare plasmonic nanocrystal films.These rigorous preparation processes seriously limit the further development of DESWs.Herein,we report a facile and effective sol-gel strategy using a foaming agent to achieve porous Ti-doped tungsten oxide film for the high performance of DESWs.The introduction of foaming agent polyvinylpyrrolidone during the film preparation can increase the specific surface area and free carrier concentration of the films and enhance their independent regulation ability of near-infrared electrochromism.As a result,the optimal film shows excellent dual-band electrochromic properties,including high optical modulation(84.9%at 633 nm and 90.3%at 1200 nm),high coloration efficiency(114.9 cm^(2) C^(-1) at 633 nm and 420.3 cm^(2) C^(-1) at 1200 nm),quick switching time,excellent bistability,and good cycle stability(the transmittance modulation losses at 633 and 1200 nm were 11%and 3.5%respectively after 1000 cycles).A demonstrated DESW fabricated by the sol-gel film showed effective management of heat and light of sunlight.This study represents a significant advance in the preparation of dual-band electrochromic films,which will shed new light on advancing electrochromic technology for future energy-saving smart buildings. 展开更多
关键词 ELECTROCHROMISM tungsten oxide Smart windows Sol-gel method Dual-band absorption
在线阅读 下载PDF
Effect of tungsten oxide on ceria nanorods to support copper species as CO oxidation catalysts 被引量:6
14
作者 Yu'nan Li Lin Gan Rui Si 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第1期43-50,I0002,共9页
In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at%and 3.2 at%)was introduced to the ceria nanorods via a deposition-precipitation(DP)approach,and copper species of ca.10 at%were sequentially a... In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at%and 3.2 at%)was introduced to the ceria nanorods via a deposition-precipitation(DP)approach,and copper species of ca.10 at%were sequentially anchored onto the modified ceria support by a similar DP route.The aim of the study was to investigate the effect of the amount of tungsten oxide(0,0.4 at%,2.0 at%,and 3.2 at%)modifier on the copper-ceria catalysts for CO oxidation reaction and shed light on the structure-activity relationship.By the aids of multiple characterization techniques including N2 adsorption,high-resolution transmission electron microscopy(HRTEM),powder X-ray diffraction(XRD),X-ray absorption fine structure(XAFS),and temperature-programmed reduction by hydrogen(H2-TPR)in combination with the catalytic performance for CO oxidation reaction,it is found that the copper-ceria samples maintain the crystal structure of the fluorite fcc CeO2 phase with the same nanorod-like morphology with the introduction of tungsten oxide,while the textural properties(the surface area,pore volume and pore size)of ceria support and copper-ceria catalysts are changed,and the oxidation states of copper and tungsten are kept the same as Cu2+and W6+before and after the reaction,but the introduction of tungsten oxide(WO3)significantly changes the metal-support interaction(transfer the CuOx clusters to Cu-[Ox]-Ce species),which delivers to impair the catalytic activity of copper-ceria catalysts for CO oxidation reaction. 展开更多
关键词 Copper catalyst CERIA tungsten oxide CO oxidation Structure-activity relationship Rare earths
原文传递
Niobium Tungsten Oxide in a Green Water‑in‑Salt Electrolyte Enables Ultra‑Stable Aqueous Lithium‑Ion Capacitors 被引量:5
15
作者 Shengyang Dong Yi Wang +2 位作者 Chenglong Chen Laifa Shen Xiaogang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期106-116,共11页
Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of ... Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications.Here,we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green“water-in-salt”electrolyte,providing wide voltage window up to 2.8 V.It facilitates the reversible function of niobium tungsten oxide,Nb18W16O93,that otherwise only operations in organic electrolytes previously.The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance,high areal capacity,and ultra-long cycling stability.An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based“water-in-salt”electrolyte,delivering a high energy density of 41.9 W kg−1,high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles. 展开更多
关键词 Aqueous hybrid capacitors Water-in-salt electrolyte Niobium tungsten oxide Ultra-stability High power density
在线阅读 下载PDF
Effect of rare earth element cerium on preparation of tungsten powders 被引量:3
16
作者 何文 谭敦强 +3 位作者 李亚蕾 杨欣 陆磊 陆德平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第5期561-566,共6页
Tungsten powders and Ce doped powders were prepared by hydrogen reduction combined with the liquid-solid doping method. The phase composition, particle size and powder morphology of Ce doped tungsten powders were anal... Tungsten powders and Ce doped powders were prepared by hydrogen reduction combined with the liquid-solid doping method. The phase composition, particle size and powder morphology of Ce doped tungsten powders were analyzed by X-ray diffrac-tion, scanning electron microscopy and transmission electron microscopy, respectively. The results indicated that 10000 ppm Ce doped tungsten oxide powders were consisted of WO3 phase and Ce4W9O33 phase. The hydrogen reduction of Ce doped tungsten powders was basically accomplished at 800 oC for 3 h. The size of Ce doped W powders was remarkably decreased compared to the undoped W powders. The phase of Ce4W9O33 was reduced to Ce2 (WO4)3 phase and Ce2W2O9 phase during the process of hydrogen reduction. Moreover, Ce2 (WO4)3 phase and Ce2W2O9 phase were observed form their morphologies, where the doping content of Ce was more than 100 ppm. The ternary phase embedding into W particles was assigned to Ce2 (WO4)3, while the ternary phase distrib-uting among W particles corresponded to Ce2W2O9. The phase of Ce2 (WO4)3 might be the nucleus of W particles and increase the number of the nucleus. And the particles of Ce2W2O9 covered WO2 particles and might inhibit the growth of W particles. These two reasons resulted in the decrease of the size of Ce doped W particles. Uniform fine W powders were fabricated with the doping content of Ce more than 100 ppm. 展开更多
关键词 CERIUM tungsten oxide hydrogen reduction tungsten powders rare earths
原文传递
Sodium tungsten bronze(Na_(x)WO_(3))-doped near-infrared-shielding bulk glasses for energy-saving applications 被引量:3
17
作者 Guang Yang Yunhang Qi +7 位作者 Daming Hu Haochen Wang Hongfei Chen Liangmiao Zhang Chuanxiang Cao Bin Liu Fang Xia Yanfeng Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第30期150-157,共8页
Tungsten bronze coatings and films have attracted global attention for their applications in near-infrared(NIR)-shielding windows.However,they are unstable in strong ultraviolet,humid heat,alkaline and/or oxidizing en... Tungsten bronze coatings and films have attracted global attention for their applications in near-infrared(NIR)-shielding windows.However,they are unstable in strong ultraviolet,humid heat,alkaline and/or oxidizing environments and are difficult to be coated on glass surfaces with complex shape.Here,we address these limitations by doping sodium tungsten bronze(Na_(x)WO_(3))into bulk glasses using a simple glass melting method.X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,TEM and SEM-EDS characterization confirmed the presence of sodium tungsten bronze(Na_(x)WO_(3))functional units inside the 34SiO_(2)-38B_(2)O_(3)-28NaF glass matrix.Because the functional units are well protected by the glass matrix,the fabricated glasses are stable under hot,humid,oxidizing conditions,as well as under ambient conditions,with no change after 360 days.The NIR-shielding performance of these glasses can be adjusted to as high as 100%by varying WO_(x)concentration(2-8 mol%)and quenching temperature(1000-1400℃).With a content of 6 mol%WO_(x)and a quenching temperature of 1000℃,the bulk glass shows 63%transmission of visible light and only 11%transmission of NIR light at 1100 nm.Thermal insulation experiments show that the NIR-shielding performance of the glasses are far superior to commercial soda lime window glass or indium-doped tin oxide(ITO)glass,and comparable to cesium tungsten bronze coated glass.The novel bulk glasses have higher stability,simpler processing,and can be easily made into complex shapes,making them excellent alternative materials for energy-saving glasses. 展开更多
关键词 tungsten bronze tungsten oxide Near infrared shielding Energy-saving glass
原文传递
Synthesis and electrical characterization of tungsten oxide nanowires 被引量:3
18
作者 黄睿 朱静 于荣 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期3024-3030,共7页
Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to... Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to control oxygen concentration in the furnace,thereby assisting the growth of the tungsten oxide nanowires.The grown tungsten oxide nanowires are determined to be of crystalline W18O49. I-V curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires.All of the I-V curves observed are symmetric,which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I-V curves by using a metal semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires,such as the carrier concentration,the carrier mobility and the conductivity. 展开更多
关键词 tungsten oxide nanowires chemical vapour deposition (CVD) electrical characterization metal semiconductor metal (MSM) structure
原文传递
Aerobic oxidative desulfurization via magnetic mesoporous silica-supported tungsten oxide catalysts 被引量:1
19
作者 Wei Jiang Xiang Gao +7 位作者 Lei Dong Jin Xiao Lin-Hua Zhu Guang-Ying Chen Su-Hang Xun Chong Peng Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1422-1431,共10页
It is usually difficult to remove dibenzothiophenes from diesel fuels by oxidation with molecular oxygen as an oxidant.In the study,tungsten oxide was supported on magnetic mesoporous silica by calcination to form a m... It is usually difficult to remove dibenzothiophenes from diesel fuels by oxidation with molecular oxygen as an oxidant.In the study,tungsten oxide was supported on magnetic mesoporous silica by calcination to form a magnetically separable catalyst for oxidative desulfurization of diesel fuel.By tuning different calcining temperatures,the catalyst calcined at 500℃showed a high catalytic activity with molecular oxygen as the oxidant.Under optimal reaction conditions,the sulfur removal of DBT reached 99.9%at 120℃after 8 h.Furthermore,the removals of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could also get up to 98.2%and 92.3%under the same conditions.The reaction mechanism was explored by selective quenching experiments and FT-IR spectra. 展开更多
关键词 Oxidative desulfurization Molecular oxygen Magnetic separation Mesoporous structure tungsten oxide
原文传递
Photo-induced carbon dioxide reduction on hexagonal tungsten oxide via an oxygen vacancies-involved process 被引量:1
20
作者 Yi Wang Runze Liu +4 位作者 Ming Shi Panwang Zhou Keli Han Can Li Rengui Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期410-414,共5页
Although converting the greenhouse gasses carbon dioxide(CO_(2))into solar fuels is regarded as a convenient means of solar energy storage,the intrinsic mechanism on how the high chemical inertness linear CO_(2)molecu... Although converting the greenhouse gasses carbon dioxide(CO_(2))into solar fuels is regarded as a convenient means of solar energy storage,the intrinsic mechanism on how the high chemical inertness linear CO_(2)molecules is activated and converted on a semiconductor oxide is still elusive.Herein,by creating the oxygen vacancies on the typical hexagonal tungsten oxide(WO3),we realize the continuous photoinduced CO_(2)reduction to selectively produce CO under light irradiation,which was verified by isotope labeling experiment.Detailed oxygen vacancies evolution investigation indicates that light irradiation can simultaneously induce the in-situ formation of oxygen vacancies on hexagonal WO3,and the oxygen vacancies promote the adsorption and activation of CO_(2)molecules,leading to the CO_(2)reduction to CO on the hexagonal WO3via an oxygen vacancies-involved process.Besides,the existence of water further promotes the formation of CO_(2)reduction intermediate,further promote the CO_(2)photoreduction.Our work provides insight on the mechanism for converting CO_(2)into CO under light irradiation. 展开更多
关键词 Carbon dioxide reduction Oxygen vacancy PHOTOCATALYSIS Reaction mechanism tungsten oxide
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部