The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,th...The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.展开更多
We present hybrid tunable lasers at 2.0-μm wavelength,seamlessly integrated within silicon photonic circuits for advanced biomedical applications.Leveraging III/V semiconductor materials for gain and silicon ring res...We present hybrid tunable lasers at 2.0-μm wavelength,seamlessly integrated within silicon photonic circuits for advanced biomedical applications.Leveraging III/V semiconductor materials for gain and silicon ring resonators for tuning,the laser achieves a tuning range of 25 nm,precise adjustments below 0.1 nm,and a side-mode suppression ratio of 40 d B.This advancement contributes to the progress in photonic integrated circuits beyond the telecommunication wavelength range,offering scalable and cost-effective solutions for enhanced spectroscopic systems within the 2.0-μm wavelength range.展开更多
Wavelength tunable and directly modulated distributed Bragg reflector (DBR) lasers with butt-joint technology are designed, fabricated and characterized. The DBR laser consists of a gain section and a DBR section. T...Wavelength tunable and directly modulated distributed Bragg reflector (DBR) lasers with butt-joint technology are designed, fabricated and characterized. The DBR laser consists of a gain section and a DBR section. To increase the electrical isolation between the gain section and the DBR section, parts of a p-doped material in the isolation region are etched off selectively. Over 2kΩ isolation resistance is realized ultimately without the need of ion implantation, which simplifies the fabrication process. The laser exhibits high speed modulation with a large tunable range. The 3dB direct modulation bandwidth of the device is over 8GHz in a 12nm tunable range. This widely tunable DBR laser with the simple structure is promising as a colorless light source for the next-generation time and wavelength division multiplexed passive optical network (TWDM-PON) systems.展开更多
We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a sin...We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.展开更多
This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in China's Mainland. The wavelength tuning range covers 33nm and the output p...This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in China's Mainland. The wavelength tuning range covers 33nm and the output power reaches 10mW with an SOA current of 50mA. The device can work at available channels with SMSR over 35dB.展开更多
The tunable BIG RW distributed Bragg reflector lasers with two different coupling coefficient gratings are proposed and fabricated.The threshold current of the laser is 38mA and the output power is more than 8mW.The ...The tunable BIG RW distributed Bragg reflector lasers with two different coupling coefficient gratings are proposed and fabricated.The threshold current of the laser is 38mA and the output power is more than 8mW.The tunable range of the laser is 3 2nm and the side mode suppression ratio is more than 30dB.The variation of the output power within the tunable wavelength range is less than 0 3dB.展开更多
In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Consi...In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.展开更多
As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A fie...As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.展开更多
A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical bra...A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical branches have been derived. It is found that the temperature-independent contributions are very important, especially at low temperature. The total pressure-induced shift (PS) of a level (or spectral line or band) is the algebraic sum of its PS without EPI and its PS due to EPI. By means of both the theory for shifts of energy spectra due to EPI and the theory for PS of energy spectra, the total PS of R<SUB>1</SUB> line of tunable laser crystal GSGG:Cr<SUP>3+</SUP> at 70 K as well as the ones of its R<SUB>1</SUB> line, R<SUB>2</SUB> line and U band at 300 K will be successfully calculated and explained in this series of papers.展开更多
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of...A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm^2only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current densitycan be reduced remarkably compared with the free-running QD gain device.展开更多
We develop a picosecond widely tunable laser in a deep-ultraviolet region from 175 nm to 210 nm, generated by two stages of frequency doubling of a 80-MHz mode-locked picosecond Ti:sapphire laser. A β-BaB2O4 walk-of...We develop a picosecond widely tunable laser in a deep-ultraviolet region from 175 nm to 210 nm, generated by two stages of frequency doubling of a 80-MHz mode-locked picosecond Ti:sapphire laser. A β-BaB2O4 walk-off compensation configuration and a KBe2BO3F2 prism-coupled device are adopted for the generation of second harmonic and fourth harmonics, respectively. The highest power is 3.72 mW at 193 nm, and the fluctuation at 2.85 mW in 130 rain is less than ±2%.展开更多
Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater o...Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.展开更多
Since numerous characteristic absorption lines caused by molecular vibration exist in the midinfrared(MIR)wavelength region,selective excitation or selective dissociation of molecules is possible by tuning the laser w...Since numerous characteristic absorption lines caused by molecular vibration exist in the midinfrared(MIR)wavelength region,selective excitation or selective dissociation of molecules is possible by tuning the laser wavelength to the characteristic absorption lines of target molecules.By applying this feature to the medical fields,less-invasive treatment and non-destructive diagnosis with absorption spectroscopy are possible using tunable MIR lasers.A high-energy nanosecond pulsed MIR tunable laser was obtained with difference-frequency generation(DFG)between a Nd:YAG and a tunable Cr:forsterite lasers.The MIR-DFG laser was tunable in a wavelength range of 5.5–10μm and generated laser pulses with energy of up to 1.4mJ,a pulse width of 5 ns,and a pulse repetition rate of 10 Hz.Selective removal of atherosclerotic lesion was successfully demonstrated with the MIR-DFG laser tuned at a wavelength of 5.75μm,which corresponds to the characteristic absorption of the ester bond in cholesterol esters in the atherosclerotic lesions.We have developed a non-destructive diagnostic probe with an attenuated total reflection(ATR)prism and two hollow optical fibers.An absorption spectrum of cholesterol was measured with the ATR probe by scanning the wavelength of the MIR-DFG laser,and the spectrum was in good agreement with that measured with a commercial Fourier transform infrared spectrometer.展开更多
Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is int...Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.展开更多
Densities of Ar metastable states 1s5 and 1s3 are measured by using the tunable diode laser absorption spectroscopy(TDLAS) in Ar and Ar/O2 mixture dual-frequency capacitively coupled plasma(DF-CCP). We investigate...Densities of Ar metastable states 1s5 and 1s3 are measured by using the tunable diode laser absorption spectroscopy(TDLAS) in Ar and Ar/O2 mixture dual-frequency capacitively coupled plasma(DF-CCP). We investigate the effects of high-frequency(HF, 60 MHz) power, low-frequency(LF, 2 MHz) power, and working pressure on the density of Ar metastable states for three different gas components(0%, 5%, and 10% oxygen mixed in argon). The dependence of Ar metastable state density on the oxygen content is also studied at different working pressures. It is found that densities of Ar metastable states in discharges with different gas components exhibit different behaviors as HF power increases. With the increase of HF power, the metastable density increases rapidly at the initial stage, and then tends to be saturated at a higher HF power. With a small fraction(5% or 10%) of oxygen added in argon plasma, a similar change of the Ar metastable density with HF power can be observed, but the metastable density is saturated at a higher HF power than in the pure argon discharge. In the DF-CCP, the metastable density is found to be higher than in a single frequency discharge, and has weak dependence on LF power. As working pressure increases, the metastable state density first increases and then decreases,and the pressure value, at which the density maximum occurs, decreases with oxygen content increasing. Besides, adding a small fraction of oxygen into argon plasma will significantly dwindle the metastable state density as a result of quenching loss by oxygen molecules.展开更多
A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtai...A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.展开更多
The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings cent...The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.展开更多
A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conj...A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conjunction with the F-P LD will realize a filter with multiple passbands. By adjusting the wavelengths of the multiple optical carriers, multiple passbands are merged into a single passband with a broadened bandwidth. By varying the number of the optical carrier, the bandwidth can be adjusted. The central frequency can be tuned by adjusting the wavelength of the multiple optical carriers simultaneously. A single-passband filter implemented by two optical carriers is experimentally demonstrated.展开更多
A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time...A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time.The maximum output power of the five-wavelength laser is 5.66 W with an optical-to-optical conversion efficiency of 11.3%.After a birefringent filter is inserted in the cavity,the five wavelengths can be separated successfully by rotating the filter.The maximum output powers of the 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm lasers are 1.51 W,1.3 W,1.27 W,0.86 W,and 0.72 W,respectively.展开更多
By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI o...By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.展开更多
文摘The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.
基金King Abdullah University of Science and Technology(RFS-TRG2024-6196,RFS-OFP2023-5558,FCC/1/5939)。
文摘We present hybrid tunable lasers at 2.0-μm wavelength,seamlessly integrated within silicon photonic circuits for advanced biomedical applications.Leveraging III/V semiconductor materials for gain and silicon ring resonators for tuning,the laser achieves a tuning range of 25 nm,precise adjustments below 0.1 nm,and a side-mode suppression ratio of 40 d B.This advancement contributes to the progress in photonic integrated circuits beyond the telecommunication wavelength range,offering scalable and cost-effective solutions for enhanced spectroscopic systems within the 2.0-μm wavelength range.
基金Supported by the National Key Project under Grant No 2016YFB0402301the National High Technology Research and Development Program of China under Grant No 2013AA014502the National Natural Science Foundation of China under Grant Nos 61635010,61320106013,61474112,61321063 and 61274071
文摘Wavelength tunable and directly modulated distributed Bragg reflector (DBR) lasers with butt-joint technology are designed, fabricated and characterized. The DBR laser consists of a gain section and a DBR section. To increase the electrical isolation between the gain section and the DBR section, parts of a p-doped material in the isolation region are etched off selectively. Over 2kΩ isolation resistance is realized ultimately without the need of ion implantation, which simplifies the fabrication process. The laser exhibits high speed modulation with a large tunable range. The 3dB direct modulation bandwidth of the device is over 8GHz in a 12nm tunable range. This widely tunable DBR laser with the simple structure is promising as a colorless light source for the next-generation time and wavelength division multiplexed passive optical network (TWDM-PON) systems.
文摘We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.
基金the National Natural Science Foundation of China(Nos.90401025,60736036,60706009,60777021)the State Key Development Program for Basic Research of China(Nos.2006CB604901,2006CB604902)the National High Technology Research and Development Program of China(Nos.2006AA01Z256,2007AA03Z419,2007AA03Z417)~~
文摘This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in China's Mainland. The wavelength tuning range covers 33nm and the output power reaches 10mW with an SOA current of 50mA. The device can work at available channels with SMSR over 35dB.
文摘The tunable BIG RW distributed Bragg reflector lasers with two different coupling coefficient gratings are proposed and fabricated.The threshold current of the laser is 38mA and the output power is more than 8mW.The tunable range of the laser is 3 2nm and the side mode suppression ratio is more than 30dB.The variation of the output power within the tunable wavelength range is less than 0 3dB.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Applied Fundamental Research Project, China(Grant No 07JCZDJC05900)
文摘In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.
文摘As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.
文摘A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical branches have been derived. It is found that the temperature-independent contributions are very important, especially at low temperature. The total pressure-induced shift (PS) of a level (or spectral line or band) is the algebraic sum of its PS without EPI and its PS due to EPI. By means of both the theory for shifts of energy spectra due to EPI and the theory for PS of energy spectra, the total PS of R<SUB>1</SUB> line of tunable laser crystal GSGG:Cr<SUP>3+</SUP> at 70 K as well as the ones of its R<SUB>1</SUB> line, R<SUB>2</SUB> line and U band at 300 K will be successfully calculated and explained in this series of papers.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086 and 60776037)
文摘A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm^2only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current densitycan be reduced remarkably compared with the free-running QD gain device.
基金supported by the State Key Program for Basic Research of China (Grant No. 2010CB630706)National High Technology Research and Development Program of Chinathe National Natural Science Foundation of China (Grant No. 61138004)
文摘We develop a picosecond widely tunable laser in a deep-ultraviolet region from 175 nm to 210 nm, generated by two stages of frequency doubling of a 80-MHz mode-locked picosecond Ti:sapphire laser. A β-BaB2O4 walk-off compensation configuration and a KBe2BO3F2 prism-coupled device are adopted for the generation of second harmonic and fourth harmonics, respectively. The highest power is 3.72 mW at 193 nm, and the fluctuation at 2.85 mW in 130 rain is less than ±2%.
基金the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210593)the Foundation of Jiangsu Provincial Double Innovation Doctor Program (Grant No. 30644)+2 种基金the National Natural Science Foundation of China (Grant No. 62204127)State Key Laboratory of Luminescence and Applications (Grant No. SKLA 202104)open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications, Ministry of Education)。
文摘Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.
基金supported by Takeda Science Foundation,Japanese Foundation for Research and Promotion of Endoscopy,and Grants-in-Aid for Scientific Research(KAKENHI).
文摘Since numerous characteristic absorption lines caused by molecular vibration exist in the midinfrared(MIR)wavelength region,selective excitation or selective dissociation of molecules is possible by tuning the laser wavelength to the characteristic absorption lines of target molecules.By applying this feature to the medical fields,less-invasive treatment and non-destructive diagnosis with absorption spectroscopy are possible using tunable MIR lasers.A high-energy nanosecond pulsed MIR tunable laser was obtained with difference-frequency generation(DFG)between a Nd:YAG and a tunable Cr:forsterite lasers.The MIR-DFG laser was tunable in a wavelength range of 5.5–10μm and generated laser pulses with energy of up to 1.4mJ,a pulse width of 5 ns,and a pulse repetition rate of 10 Hz.Selective removal of atherosclerotic lesion was successfully demonstrated with the MIR-DFG laser tuned at a wavelength of 5.75μm,which corresponds to the characteristic absorption of the ester bond in cholesterol esters in the atherosclerotic lesions.We have developed a non-destructive diagnostic probe with an attenuated total reflection(ATR)prism and two hollow optical fibers.An absorption spectrum of cholesterol was measured with the ATR probe by scanning the wavelength of the MIR-DFG laser,and the spectrum was in good agreement with that measured with a commercial Fourier transform infrared spectrometer.
文摘Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11335004,11722541,11675039,and 11747153)the Important National Science and Technology Specific Project,China(Grant No.2011ZX02403-001)
文摘Densities of Ar metastable states 1s5 and 1s3 are measured by using the tunable diode laser absorption spectroscopy(TDLAS) in Ar and Ar/O2 mixture dual-frequency capacitively coupled plasma(DF-CCP). We investigate the effects of high-frequency(HF, 60 MHz) power, low-frequency(LF, 2 MHz) power, and working pressure on the density of Ar metastable states for three different gas components(0%, 5%, and 10% oxygen mixed in argon). The dependence of Ar metastable state density on the oxygen content is also studied at different working pressures. It is found that densities of Ar metastable states in discharges with different gas components exhibit different behaviors as HF power increases. With the increase of HF power, the metastable density increases rapidly at the initial stage, and then tends to be saturated at a higher HF power. With a small fraction(5% or 10%) of oxygen added in argon plasma, a similar change of the Ar metastable density with HF power can be observed, but the metastable density is saturated at a higher HF power than in the pure argon discharge. In the DF-CCP, the metastable density is found to be higher than in a single frequency discharge, and has weak dependence on LF power. As working pressure increases, the metastable state density first increases and then decreases,and the pressure value, at which the density maximum occurs, decreases with oxygen content increasing. Besides, adding a small fraction of oxygen into argon plasma will significantly dwindle the metastable state density as a result of quenching loss by oxygen molecules.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61275157 and 61475040the National Key Scientific Instrument and Equipment Development,Project under Grant No 2012YQ120048+1 种基金the National Development Project for Major Scientific Research Facility under Grant No ZDYZ2012-2the National Key Research and Development Program of China under Grant No 2016YFB0402003
文摘A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2014AA041901NSAF Foundation of the National Natural Science Foundation of China under Grant No U1330134+1 种基金the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02the National Natural Science Foundation of China under Grant Nos 61308024 and 11174305
文摘The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61302026,61275067 and 61575034the Jiangsu Natural Science Foundation under Grant No BK2012432
文摘A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conjunction with the F-P LD will realize a filter with multiple passbands. By adjusting the wavelengths of the multiple optical carriers, multiple passbands are merged into a single passband with a broadened bandwidth. By varying the number of the optical carrier, the bandwidth can be adjusted. The central frequency can be tuned by adjusting the wavelength of the multiple optical carriers simultaneously. A single-passband filter implemented by two optical carriers is experimentally demonstrated.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110002120054)the National High Technology Research and Development Program of China (Grant No. 2011AA030208)
文摘A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time.The maximum output power of the five-wavelength laser is 5.66 W with an optical-to-optical conversion efficiency of 11.3%.After a birefringent filter is inserted in the cavity,the five wavelengths can be separated successfully by rotating the filter.The maximum output powers of the 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm lasers are 1.51 W,1.3 W,1.27 W,0.86 W,and 0.72 W,respectively.
文摘By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.