A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized fle...A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.展开更多
Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only...Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only be performed in a centralized manner,which limits its applications in a wide range of situations where data is possessed by multiple nodes.Therefore,this paper develops a novel trust-region based stochastic variational inference algorithm for a general class of conjugate-exponential models over distributed and asynchronous networks,where the global parameters are diffused over the network by using the Metropolis rule and the local parameters are updated by using the trust-region method.Besides,a simple rule is introduced to balance the transmission frequencies between neighboring nodes such that the proposed distributed algorithm can be performed in an asynchronous manner.The utility of the proposed algorithm is tested by fitting the Bernoulli model and the Gaussian model to different datasets on a synthetic network,and experimental results demonstrate its effectiveness and advantages over existing works.展开更多
文摘A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.
基金the National Natural Science Foundation of China under Grant Nos.61922076,61873252,61725304,and 61973324in part by Guangdong Basic and Applied Basic Research Foundation under Grant No.2021B1515020094in part by the Guangdong Provincial Key Laboratory of Computational Science under Grant No.2020B1212060032。
文摘Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only be performed in a centralized manner,which limits its applications in a wide range of situations where data is possessed by multiple nodes.Therefore,this paper develops a novel trust-region based stochastic variational inference algorithm for a general class of conjugate-exponential models over distributed and asynchronous networks,where the global parameters are diffused over the network by using the Metropolis rule and the local parameters are updated by using the trust-region method.Besides,a simple rule is introduced to balance the transmission frequencies between neighboring nodes such that the proposed distributed algorithm can be performed in an asynchronous manner.The utility of the proposed algorithm is tested by fitting the Bernoulli model and the Gaussian model to different datasets on a synthetic network,and experimental results demonstrate its effectiveness and advantages over existing works.