The roof system of social housing in Brazil generally consists of components made out of native forest lumber of high market value. Taking into account the increasing number of planted forests and the need to develop ...The roof system of social housing in Brazil generally consists of components made out of native forest lumber of high market value. Taking into account the increasing number of planted forests and the need to develop new products and to add value to this timber, this work deals with the development and structural analysis of a roof system using yellow pine plantation wood (Pinus spp), a sustainable material which however presents many defects. The NLT (laminated nailed timber) technology was chosen as it allows the use of shorter length and smaller cross section pieces, eliminating major defects. Seven samples of structural trussed rafters in NLT were tested; six made out of graded timber and one ungraded in order to verify the impact of the wood grading in the structural performance of the model. The results showed that the trussed rafter system in NLT meets the necessary structural performance requiring poor conditions of infrastructure for manufacture process, and that the graded wood samples showed better performance than the ungraded one.展开更多
This article analyzes the design of a variable-height simply supported steel truss bridge based on an actual project.It includes its basic situation,introduction to variable-height simply supported steel truss bridges...This article analyzes the design of a variable-height simply supported steel truss bridge based on an actual project.It includes its basic situation,introduction to variable-height simply supported steel truss bridges,key design points of such bridges,and finite element analysis of the design effect.The analysis shows that for such bridges,reasonable main structure design and node design are the keys to determining the overall design idea,and through the reasonable application of the finite element analysis method,the design effect can be scientifically determined,providing a reference for the subsequent structural design of such projects.展开更多
Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors...Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.展开更多
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m...To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.展开更多
Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is...Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.展开更多
For the truss structure composed of active-elements with piezoelectric patches affixed to its surface,taking the mechani-cal-electric coupling effect under the action of electric loads and mechanical loads into consid...For the truss structure composed of active-elements with piezoelectric patches affixed to its surface,taking the mechani-cal-electric coupling effect under the action of electric loads and mechanical loads into consideration,the finite element model for static force analysis is established by using the theory of mechanics. The failure mechanism of piezoelectric elements is discussed and the failure criteria of piezoelectric elements are proposed. The expression of safety margins for the element of piezoelec...展开更多
Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a pie...Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.展开更多
Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sen...Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.展开更多
文摘The roof system of social housing in Brazil generally consists of components made out of native forest lumber of high market value. Taking into account the increasing number of planted forests and the need to develop new products and to add value to this timber, this work deals with the development and structural analysis of a roof system using yellow pine plantation wood (Pinus spp), a sustainable material which however presents many defects. The NLT (laminated nailed timber) technology was chosen as it allows the use of shorter length and smaller cross section pieces, eliminating major defects. Seven samples of structural trussed rafters in NLT were tested; six made out of graded timber and one ungraded in order to verify the impact of the wood grading in the structural performance of the model. The results showed that the trussed rafter system in NLT meets the necessary structural performance requiring poor conditions of infrastructure for manufacture process, and that the graded wood samples showed better performance than the ungraded one.
文摘This article analyzes the design of a variable-height simply supported steel truss bridge based on an actual project.It includes its basic situation,introduction to variable-height simply supported steel truss bridges,key design points of such bridges,and finite element analysis of the design effect.The analysis shows that for such bridges,reasonable main structure design and node design are the keys to determining the overall design idea,and through the reasonable application of the finite element analysis method,the design effect can be scientifically determined,providing a reference for the subsequent structural design of such projects.
文摘Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.
基金financially supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)。
文摘To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.
基金The National Natural Science Foundation of China(No50178026)Program for New Century Excellent Talents in University+1 种基金the Key Technologies R & D Program of Heilongjiang Province(NoGC04A609)the Key Technologies R & D Program of Harbin City(No2004AA9CS187)
文摘Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.
基金National Defense Basic Foundation (Z192002A001)National Defense Monograph Foundation
文摘For the truss structure composed of active-elements with piezoelectric patches affixed to its surface,taking the mechani-cal-electric coupling effect under the action of electric loads and mechanical loads into consideration,the finite element model for static force analysis is established by using the theory of mechanics. The failure mechanism of piezoelectric elements is discussed and the failure criteria of piezoelectric elements are proposed. The expression of safety margins for the element of piezoelec...
基金Supported by the high-tech ship research projects of the Ministry of Industry and Information Technology:Recearch on the key characteristic of Spar designNational Natural Science Foundation of China(51239007)
文摘Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.
文摘Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.