Gene targeting technology is an important means to investigate gene functions, but its efficiency of gene targeting is very low, especially for somatic cell targeting. Artificially induced double-strand breaks (DSB)...Gene targeting technology is an important means to investigate gene functions, but its efficiency of gene targeting is very low, especially for somatic cell targeting. Artificially induced double-strand breaks (DSB) and triplex forming oligonucleotide (TFO) are currently developed methods to improve the targeting efficiency. This paper summarized the basic principles, design ideas and application in gene targeting efficiency improvement of these two methods, analyzed and com- pared their characteristics, and finally proposed prospects for their future development.展开更多
PDGF (platelet derived growth factor) has been shown to play animportant role in tumorigenesis, tumor growth, atherosclerosis and inflammation and other various pathologic settings. PDGF-B chain gene is 92% homologous...PDGF (platelet derived growth factor) has been shown to play animportant role in tumorigenesis, tumor growth, atherosclerosis and inflammation and other various pathologic settings. PDGF-B chain gene is 92% homologous to v-sis oncogene of the simian sarcoma virus. Thus PDGF-B gene is also called c-sis proto-oncogene. This report provides 3 TFOs (triplex-forming oligonucleotides) to inhibit the expression of c-sis/PDGF-B gene. The results from gel mobility shift analysis, in vitro transcription, DNase I footprinting and protein binding assays demonstrate that the TFOs we designed can form sequence-specific stable triplex with the target, and can effectively suppress the downstream gene transcription and inhibit transcription factors binding. They can be used for preparation of drugs to inhibit tumor growth and for the therapy of atherosclerosis, inflammation, etc.展开更多
基金Supported by Shandong Swine Industry Technology System and Science and Technology Planning Program for Basic Research in Qingdao City(12-1-4-14-jch)
文摘Gene targeting technology is an important means to investigate gene functions, but its efficiency of gene targeting is very low, especially for somatic cell targeting. Artificially induced double-strand breaks (DSB) and triplex forming oligonucleotide (TFO) are currently developed methods to improve the targeting efficiency. This paper summarized the basic principles, design ideas and application in gene targeting efficiency improvement of these two methods, analyzed and com- pared their characteristics, and finally proposed prospects for their future development.
基金the State Key Programs Basic Research of China (Grant No. G1998051103) and National High Technology Programs of China (Grant No. 863-102-08-8).
文摘PDGF (platelet derived growth factor) has been shown to play animportant role in tumorigenesis, tumor growth, atherosclerosis and inflammation and other various pathologic settings. PDGF-B chain gene is 92% homologous to v-sis oncogene of the simian sarcoma virus. Thus PDGF-B gene is also called c-sis proto-oncogene. This report provides 3 TFOs (triplex-forming oligonucleotides) to inhibit the expression of c-sis/PDGF-B gene. The results from gel mobility shift analysis, in vitro transcription, DNase I footprinting and protein binding assays demonstrate that the TFOs we designed can form sequence-specific stable triplex with the target, and can effectively suppress the downstream gene transcription and inhibit transcription factors binding. They can be used for preparation of drugs to inhibit tumor growth and for the therapy of atherosclerosis, inflammation, etc.