The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift ...The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.展开更多
In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method o...In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method of designing a RSD-based pulse circuit without a magnetic switch is proposed.In the pulse circuit,a RBDT(reverse blocking diode thyristor)is used to separate the two capacitors and provide an energy branch.The pre-charge time of the RSD can be guaranteed by the energy conversion between the capacitors and inductors,instead of the saturation of the magnetic switch.In addition,the energy which is reused to trigger the RSD is based on an inductor.The pulse circuit is evaluated by simulations and practical experiments.According to the experimental results,the factors affecting the load pulse current and triggering of the RSD and RBDT are studied.Meanwhile,a method to reduce the current in the trigger switch,which is a potential problem in the pulse circuit,is proposed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 50277016 and 50577028)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050487044)
文摘The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.
基金This work was supported by the National Natural Science Foundation of China(51877092,51377069).
文摘In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method of designing a RSD-based pulse circuit without a magnetic switch is proposed.In the pulse circuit,a RBDT(reverse blocking diode thyristor)is used to separate the two capacitors and provide an energy branch.The pre-charge time of the RSD can be guaranteed by the energy conversion between the capacitors and inductors,instead of the saturation of the magnetic switch.In addition,the energy which is reused to trigger the RSD is based on an inductor.The pulse circuit is evaluated by simulations and practical experiments.According to the experimental results,the factors affecting the load pulse current and triggering of the RSD and RBDT are studied.Meanwhile,a method to reduce the current in the trigger switch,which is a potential problem in the pulse circuit,is proposed.