This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra...This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.展开更多
An in-depth understanding of the hydration mechanism of tricalcium silicate is an important basis for optimizing cement strength development.In this study,the adsorption of water molecules onto the M3-C3S(001)surface ...An in-depth understanding of the hydration mechanism of tricalcium silicate is an important basis for optimizing cement strength development.In this study,the adsorption of water molecules onto the M3-C3S(001)surface at different water coverage levels(θ=1/5,2/5,3/5,4/5,and 1)was investigated using first-principles calculations.The results demonstrate that the conclusions obtained for single water molecule adsorption cannot be fully applied to multiple water molecule adsorption.The total adsorption energies become more negative with increasing water coverage,while the average adsorption energy of each water molecule becomes more positive with increasing water coverage.The water–water interactions reduce the water–surface interactions and are responsible for the anticooperative adsorption of multiple water molecules onto M3-C_(3)S(001).The formation of Ca–OH(–Ca)bonds favors the detachment of Ca from co-valent oxygen,which reveals the significant role of dissociative adsorption.This work aims to extend the water adsorption study on M3-C3S(001)from single water molecule adsorption to multiple water molecule adsorption,providing more detailed insights into the initial water reaction on the C3S surface.展开更多
By means of hydration heat, XRD and SEM, effect of phosphorus and fluorine (P205 and F-) in phosphorous slag on hydration process of tricalcium silicate (C3S) and tricalcium aluminate (C3A) was explored. The res...By means of hydration heat, XRD and SEM, effect of phosphorus and fluorine (P205 and F-) in phosphorous slag on hydration process of tricalcium silicate (C3S) and tricalcium aluminate (C3A) was explored. The results indicated that the early hydration exothermic rate of C3S and C3A was obviously lowered by P205 and F- in phosphorous slag, the second peak occurring time of C3A was delayed by 0.9 h, the exothermal output of C3S was reduced by 25.04% and the time of accelerating stage was postponed by 0.86 h. The early hydration degree of C3S and C3A was also decreased. Due to the influence of P205 and F, more pores and thinner crystals can be observed in the microstructure of hardened paste and the chance of cracks was reduced.展开更多
Tricalcium silicate cement(TSC)has been widely used in dental materials because of its self-setting behavior,good bioactivity,biocompatibility,osteoinductivity,and antibacterial effect.Tricalcium silicate(C3S)powder w...Tricalcium silicate cement(TSC)has been widely used in dental materials because of its self-setting behavior,good bioactivity,biocompatibility,osteoinductivity,and antibacterial effect.Tricalcium silicate(C3S)powder was prepared by Pechini technique with a calcining temperature of 1300℃ for 3 h.The influence of liquid/powder(L/P)rate on the setting time and the mechanical property of TSC was studied.Characterization methods including XRD,FTIR,SEM-EDS,TEM,and ICP-AES were utilized to study the properties of C3S powder and its hydrated cement.The bioactivity and biocompatibility of the cement were investigated by soaking test and cell culture,respectively.The results show that the L/P rate plays an important role in the setting time and the compressive strength of TSC.The surface of TSC was covered by hydroxyapatite deposition during the immersion experiment and the cells attachment on the surface of TSC was well,which indicated that TSC has good bioactivity and biocompatibility.In addition,TSC has excellent antibacterial properties against Staphylococcus aureus.In conclusion,TSC is a promising candidate for root canal filling materials.展开更多
Influences of alkali oxides doping on the crystal structure, defects and hydration behavior of tricalcium silicate C_3S were investigated by X-ray powder diffraction with the Rietveld method, inductively coupled plasm...Influences of alkali oxides doping on the crystal structure, defects and hydration behavior of tricalcium silicate C_3S were investigated by X-ray powder diffraction with the Rietveld method, inductively coupled plasma optical emission spectroscopy, thermoluminescence and isothermal calorimetry. All the samples were stabilized as T1 form C_3S. Changes in the crystal structure of C_3S could mainly be monitored by changes in lattice parameters, which were closely correlated with the incorporation concentration and substitution types of alkalis. Although alkalis were incorporated at trace level in C_3S, the thermoluminescence and hydration behavior of C_3S were significantly influenced. Initial hydration activity was dramatically increased and highly related to the intensity of the irradiation-induced thermoluminescence peaks at low temperatures due to their direct correlation with defects. The oxygen vacancy sites resulting from the substitution of alkalis for Ca could readily account for the acceleration of the initial hydration of C_3S.展开更多
Formation and coexistence of tricalciurn silicate (C3S) and calcium sulphoaluminate ( C4 A3S^- ) minerals in Portland cement clinker containing calcium sulphoaluminate were investigated. Thef-CaO content, mineral ...Formation and coexistence of tricalciurn silicate (C3S) and calcium sulphoaluminate ( C4 A3S^- ) minerals in Portland cement clinker containing calcium sulphoaluminate were investigated. Thef-CaO content, mineral composite and formation of mineral in the clinker were analyzed respectively by chemical analysis, differential scanning calorimetry(DSC) and X-ray diffraction. The results show that, adding a suitable amount of BaO can improve the burnability of raw meal and promote the f-CaO absorption. Tricalcium silicate and calcium sulphoaluminate minerals can form and coexist in clinkers at 1 234-1 317 ℃ by the addition of BaO to the raw meal. A suitable amount of BaO expanded the coexistence temperature of two minerals by 58 ℃.展开更多
Biodegradation of tricalcium phosphate (TCP) ceramics was observed through mixed culture of osteoclasts and TCP discs in vitro in this study. Osteo-clasts were isolated from newborn SD rat's marrow of long bone an...Biodegradation of tricalcium phosphate (TCP) ceramics was observed through mixed culture of osteoclasts and TCP discs in vitro in this study. Osteo-clasts were isolated from newborn SD rat's marrow of long bone and cultured on TCP discs. The culture terminated at the 48th h and 96th h respectively. Under an inverted microscope, the osteoclasts imparted round or oval body with multinu-clear and many thin processes. These cells were positively stained for tartrate-re-sistance acid phosphatase (TRAP). Scanning electron microscope showed that many resorption lacunae on TCP disc surface and their diameters were smaller than 20 μm. Osteoclasts were located in the lacunae. At the 96th h, the resorption lacunae become larger and osteoclasts showed degeneration. It is suggested that osteoclasts possess ability to re-absorb TCP ceramics under in vitro culturing condition.展开更多
Bone defect repair remains a troubling problem in clinical orthopedics,which involves complex biological processes.Calcium phosphates(CaPs)have been widely used owing to their advantage of biocompatibility.However,sin...Bone defect repair remains a troubling problem in clinical orthopedics,which involves complex biological processes.Calcium phosphates(CaPs)have been widely used owing to their advantage of biocompatibility.However,single component and traditional fabrication methods cannot meet the requirements of bioadaptability during the tissue repair process.In this work,0%,5%,15%,25%wt%of BG-TCP(bioactive glass-β-tricalcium phosphate)bioresorbable scaffolds with triply-periodic minimal surfaces(TPMS)-gyroid structure were prepared by the stereolithography(SLA)technology.TPMS-gyroid structure provided an accurate mimicry of natural bone tissue,and the incorporation of BG improved the compressive strength ofβ-TCP matrix,matched with the defective bone(2–12 MPa).Rapid but tunable degradation kinetics(compared with pure TCP)of BG enabled the BG-TCP system to sh8ow adaptable biodegradability to new bone generation.In vitro studies have shown that composite scaffolds have better mechanical properties(7.82 MPa),and can released appropriate contents of calcium,phosphorous,and magnesium ions,which promoted the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)and angiogenic ability of endothelial progenitor cells(EPCs).Moreover,the in vivo assessment of rat femoral defect revealed that TPMS-structure-based TCP scaffolds accelerated bone ingrowth to the pores.Moreover,BG-TCP scaffolds,especially 15BG-TCP group,exhibited superior bone regeneration capacity at both 4 and 8 weeks,which achieved an optimal match between the rate of material degradation and tissue regeneration.In summary,this study provides insight into influences of bioactive components(BG)and bionic structures(TPMS)on the physical-chemical properties of materials,cell behavior and tissue regeneration,which offers a promising strategy to design bioadaptive ceramic scaffolds in the clinical treatment of bone defects.展开更多
The phosphate solubilizing characteristics of a strain YC, which was isolated from phosphate mines (Hubei, China), were studied in National Botanical Research Institute’s phosphate (NBRIP) growth medium containing tr...The phosphate solubilizing characteristics of a strain YC, which was isolated from phosphate mines (Hubei, China), were studied in National Botanical Research Institute’s phosphate (NBRIP) growth medium containing tricalcium phosphate (TCP) as sole phosphorus (P) source. The strain YC is identified as Stenotrophomonas maltophilia (S. maltophilia) based upon the results of morphologic, physiological and biochemical characteristics and 16S rRNA sequences analysis. The results show that the strain S. maltophilia YC can solubilize TCP and release soluble P in NBRIP growth medium. A positive correlation between concentration of soluble P and population of the isolate and a negative correlation between concentration of soluble P and pH in the culture medium are observed from statistical analysis results. Moreover, gluconic acid is detected in the culture medium by HPLC analysis. It indicates that the isolate can release gluconic acid during the solubilizing experiment, which causes acidification of the culture medium and then TCP solubilization. S. maltophilia YC has a maximal TCP solubilizing capability when using maltose as carbon source and ammonium nitrate as nitrogen source, respectively, in NBRIP growth medium.展开更多
Optimization of the content of tricalcium silicate(C 3 S)of high cementing clinker was investigated.The content of free-CaO(f-CaO),mineral composite,the content of C 3 S in the clinker and the hydration product we...Optimization of the content of tricalcium silicate(C 3 S)of high cementing clinker was investigated.The content of free-CaO(f-CaO),mineral composite,the content of C 3 S in the clinker and the hydration product were analyzed by chemical analysis and X-ray diffraction(XRD)."K Value"method of QXRD was selected as a quantitative analysis way to measure the content of C 3 S,and the strength of cement paste was determined.The results show that at a water cement ratio of 0.29,the strength of cement paste with 73%C 3 S can be up to 97.5 MPa at 28 days age.The strength at 28 d of cement with 73%C 3 S is 16%higher than that with 78%C 3 S at water requirement for normal consistency.The relationship between the strength of high cementing Portland cement and the content of C 3 S in the clinker is nonlinear.According to the strength of cement paste,the optimal content of C 3 S in cement clinker is around 73%in this paper.展开更多
Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphog...Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering展开更多
Porous β-tricalcium phosphate (TCP) displays osteoinductivity in certain animals in the absence of osteoinductive agents. We evaluated whether the microstructure may be an important determinant of osteoinduction, and...Porous β-tricalcium phosphate (TCP) displays osteoinductivity in certain animals in the absence of osteoinductive agents. We evaluated whether the microstructure may be an important determinant of osteoinduction, and also investigated how bone formation was promoted using β-TCP combined with bone marrow aspirates. We prepared two types of β-TCP, namely, β-TCP A, which possessed interconnected macropores and micropores, and β-TCP B, which possessed macropores but had less detectable micropores. These were implanted with or without marrow in canine muscles. Bone formation and the resorption of each β-TCP implant were evaluated histologically. Newly formed bone began to appear at day 42 in the implants of β-TCP A alone, but the implants of β-TCP B alone did not show any bone formation by day 42. Meanwhile, bone formation was already evident on day 14 by loading with bone marrow aspirates with or without micropores. By immunohistochemistry, the number of cathepsin K-positive cells (osteoclasts) increased as time passed in the implants of β-TCP A alone, while the number of the osteoclasts did not change obviously in the implants of β-TCP B alone from day 14 to 56. Reticular fibrils were evident within the β-TCP A, and were barely observed in the β-TCP B in the silver impregnation. The present result would bring about the possible role to enhance the importance of the surface microstructure for the better osteoinductivity. Our findings suggest that the combination of porous β-TCP and bone marrow facilitates bone formation.展开更多
Osteoinductive properties of β-TCP remain unknown in humans. It is important to improve the bone grafts which have been the standard treatment for bone defect due to their biocompatibility and bone-healing properties...Osteoinductive properties of β-TCP remain unknown in humans. It is important to improve the bone grafts which have been the standard treatment for bone defect due to their biocompatibility and bone-healing properties. The purpose of this study was to radiologically clarify the bone forming property of β-TCP by evaluating the replacement of β-TCP by newly formed bone in the defect after fibular resection and to examine the histological features of a β-TCP specimen three months after grafting. Radiographs of 17 patients who underwent β-TCP grafting were evaluated. Osteoinductive and osteoconductive properties were assessed by examining bone formation from the remnant fibula, periosteum, and β-TCP alone. In one case, β-TCP was removed later because of postoperative complications and was evaluated histologically. Twenty two of 34 sites between the remnant fibula and β-TCP had achieved good bone regeneration. Five of 14 sites between the periosteum and β-TCP had achieved good bone regeneration. We found immature but evident bone formation in three cases with no osseous and periosteal sites. Histological analysis revealed bone formation on the outer macropore surface of β-TCP. Some blood vessels formed in the macropores expressed CD31 and CD34, while a few lymphatic vessels expressed CD34 and podoplanin. Thus, the osteoinductive ability of β-TCP alone was demonstrated in humans radiographically for the first time. The histological morphology of β-TCP was demonstrated at an early stage after grafting in humans.展开更多
We developed a fixation method and evaluate bone regrowth in the cavities of a Ф4 mm× 8 mm titanium(Ti)tube through porous hydroxyapatite(HAP)/β-tricalcium phosphate(β-TCP)composite filling(group A),ch...We developed a fixation method and evaluate bone regrowth in the cavities of a Ф4 mm× 8 mm titanium(Ti)tube through porous hydroxyapatite(HAP)/β-tricalcium phosphate(β-TCP)composite filling(group A),chitosan/calcium phosphate composite filling(group B),and HAP particle modification(group C).After 2 and 5 months of implantation in dog tibia defects,new bone formation in the three groups was studied by histology and histomorphometry.Group A displayed the most bone regenerated area in both 2 and 5 months post-operation.The chitosan/calcium phosphate composite in group B mostly degraded 2 months after implantation,leading to fibrous tissue invasion after 5 months.By contrast,less bone formation was observed in group C.These results indicated that filling the cavities of metalprostheses with a porous HAP/β-TCP composite can be used for stable long-term fixation in clinicalsettings.展开更多
In this work wollastonite/tricalcium phosphate (W/TCP) glass-ceramics with three W/TCP weight ratios (20/80;60/40 and 80/20) were implanted in rat calvaria and the modifications taking place during implantation were s...In this work wollastonite/tricalcium phosphate (W/TCP) glass-ceramics with three W/TCP weight ratios (20/80;60/40 and 80/20) were implanted in rat calvaria and the modifications taking place during implantation were studied by Raman spectroscopy. The experimental glass-ceramics were composed of different contents of βW, αW, βTCP, αTCP, and glassy phases. Materials were implanted for 7-, 15-, 45- and 120-day periods after which the implanted materials were recovered and analyzed by FT-Raman spectroscopy. The results suggested that the αW phase reabsorbs fast during implantation in the glass-ceramics 60/40 and 80/20, whereas βTCP and αTCP glass-ceramic are gradually attenuated and replaced by biological apatite-like bands. In the glass-ceramic 20/80, the bands related to the βTCP phase remained unvaried in all analyzed periods. New bands associated with the deposition of collagenous material appeared during implantation for all 60/40 and 80/20 glass-ceramics experimental groups, but important differences in intensities between both groups. The spectra corresponding to implants of 60/40 glass-ceramic at the 120-day period were very similar to those of the control group (normal cortical bone), with regards to Raman shifts and intensities, as well as in the FWHM value of the 962 cm<sup>-1</sup> apatite band (ν1 PO4 in hydroxyapatite), evidencing that apatite deposited at the implant site has the same crystallinity than biological apatite in normal bone mineral. The glass-ceramic 20/80 behaved just as an osteoconductive filling material, while glass-ceramics 60/40 and 80/20 were able to induce deposition of organic matrix mineralized new tissue. The 60/40 glass-ceramic showed the best performance and the most similar Raman spectrum to normal cortical bone.展开更多
The effect of addition of Zn, Cu, Pb and Cr chlorides as admixtures on the hydration reaction of the system 3CaO·Al2O3-gypsum with molar ratio 1:3 was studied. Different ratios of each salt were used, namely 0.5...The effect of addition of Zn, Cu, Pb and Cr chlorides as admixtures on the hydration reaction of the system 3CaO·Al2O3-gypsum with molar ratio 1:3 was studied. Different ratios of each salt were used, namely 0.5%, 2% and 4% by weight of the solid mixture. Hydration reaction was carried out at 35℃ for various time intervals from 0.5 h to up to 7 d. Hydration rate of the system 3CaO·Al2O3-CaSO4·2H2O in absence and presence of different salts was studied via the determination of the combined water contents. X-ray diffraction analysis showed that the ettringite was the only hydration product formed in the different mixes. The hydration products were investigated by scanning electron microscopy (SEM) and thermal gravimetric analysis. The results indicated that the rate of formation of ettringite and its microstructure depend on the admixture and its dosage.展开更多
The bacterial inhibitory ability of a new drug delivery system (DDS):Ciprofloxacine/tricalcium phosphate delivery capsule (CTDC), its in vivo drug release pattern, and the influence of ultrasonic irradiation on its dr...The bacterial inhibitory ability of a new drug delivery system (DDS):Ciprofloxacine/tricalcium phosphate delivery capsule (CTDC), its in vivo drug release pattern, and the influence of ultrasonic irradiation on its drug release were investigated. It was found that CTDC had a strong and sustained inhibitory ability to some common pathogens of bone and joint infections, such as staphylococcus aureus, escherichia coli and pseudomonas aeruginosa. In vivo drug-release study in animals demonstrated a high concentration of ciprofloxacine in the bone tissue surrounding CTDC which was placed in the greater trochanter of the rabbit and continued to release ciprofloxacine for at least 5 weeks and the blood level of ciprofloxacine was low. In vivo study also showed ultrasonic irradiation could increase the amount of ciprofloxacine released from CTDC, which may be an economical, effecient and safe new method to achieve the control of drug release from DDS.展开更多
To study the effects of tricalcium phosphate (TCP) ceramics on osteoblasts, the rat osteoblasts were cultured with the TCP ceramics in vitro . Scanning electron microscopy and the colorimetric methyl thiazol t...To study the effects of tricalcium phosphate (TCP) ceramics on osteoblasts, the rat osteoblasts were cultured with the TCP ceramics in vitro . Scanning electron microscopy and the colorimetric methyl thiazol tetrazolium assay showed that the osteoblasts could adhere well to the surface of the ceramics and the culture dish, and the proliferation of the cells was not inhibited. The results demonstrated that TCP ceramics possessed an excellent cytocompatibility with the osteoblasts, and had some promoting effects on proliferation of osteoblasts.展开更多
The distribution and function of transforming growth factor-beta (TGF-β) in the region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone (Co/N-TCP) and the ability of Co/N-T...The distribution and function of transforming growth factor-beta (TGF-β) in the region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone (Co/N-TCP) and the ability of Co/N-TCP recruiting osteoblasts to precipitate the repair of bone defect were investigated Twenty-four domestic rabbits were operated on bilateral cranial bone to create an experimental bone defect of 8 0 mm in diameter through the whole bone On the left, Co/N-TCP was implanted as experimental group, but on the right, Co/TCP was implanted as control group At 2nd, 4th, 8th, 12th week after operation, all animals were sacrificed and the implanted materials with surrounding bone were taken out Immunohistochemical staining was performed for TGF-β assay by avidin-biotin complex method (SABC) Simultaneously, TGF-β was quantitatively analyzed by HPIAS-1000 imaging analysis system The inmmunohistochemical staining for TGF-β revealed that osteoblasts and immature osteocytes highly expressed TGF-β Diffused TGF-β positive staining particles appeared in the mesenchymal and fibrous-tissue There was no significant difference in the TGF-β positive staining between two groups in the medial region to original osseous beds at different time points ( P >0 05) However, in distal original osseous bed of the defected region, the positive expression of TGF-β in the Co/N-TCP group was significantly stronger than in the control group ( P <0 05 or 0 01) The Co/N-TCP has good bioactivities and ability of stimulating and conducting TGF-β to aggregate and precipitate the healing of bone defect展开更多
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20241529)China Postdoctoral Science Foundation(No.2024M750736)。
文摘This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.
基金supported by the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)Natural Science Foundation of Hunan Province,China(No.2024JJ2074)supported in part by the High Performance Computing Center of Central South University,China and the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.
文摘An in-depth understanding of the hydration mechanism of tricalcium silicate is an important basis for optimizing cement strength development.In this study,the adsorption of water molecules onto the M3-C3S(001)surface at different water coverage levels(θ=1/5,2/5,3/5,4/5,and 1)was investigated using first-principles calculations.The results demonstrate that the conclusions obtained for single water molecule adsorption cannot be fully applied to multiple water molecule adsorption.The total adsorption energies become more negative with increasing water coverage,while the average adsorption energy of each water molecule becomes more positive with increasing water coverage.The water–water interactions reduce the water–surface interactions and are responsible for the anticooperative adsorption of multiple water molecules onto M3-C_(3)S(001).The formation of Ca–OH(–Ca)bonds favors the detachment of Ca from co-valent oxygen,which reveals the significant role of dissociative adsorption.This work aims to extend the water adsorption study on M3-C3S(001)from single water molecule adsorption to multiple water molecule adsorption,providing more detailed insights into the initial water reaction on the C3S surface.
基金Funded by the National Natural Science Foundation of China (No.50802067)
文摘By means of hydration heat, XRD and SEM, effect of phosphorus and fluorine (P205 and F-) in phosphorous slag on hydration process of tricalcium silicate (C3S) and tricalcium aluminate (C3A) was explored. The results indicated that the early hydration exothermic rate of C3S and C3A was obviously lowered by P205 and F- in phosphorous slag, the second peak occurring time of C3A was delayed by 0.9 h, the exothermal output of C3S was reduced by 25.04% and the time of accelerating stage was postponed by 0.86 h. The early hydration degree of C3S and C3A was also decreased. Due to the influence of P205 and F, more pores and thinner crystals can be observed in the microstructure of hardened paste and the chance of cracks was reduced.
基金Project(2019JJ50797)supported by Hunan Provincial Natural Science Foundation of China。
文摘Tricalcium silicate cement(TSC)has been widely used in dental materials because of its self-setting behavior,good bioactivity,biocompatibility,osteoinductivity,and antibacterial effect.Tricalcium silicate(C3S)powder was prepared by Pechini technique with a calcining temperature of 1300℃ for 3 h.The influence of liquid/powder(L/P)rate on the setting time and the mechanical property of TSC was studied.Characterization methods including XRD,FTIR,SEM-EDS,TEM,and ICP-AES were utilized to study the properties of C3S powder and its hydrated cement.The bioactivity and biocompatibility of the cement were investigated by soaking test and cell culture,respectively.The results show that the L/P rate plays an important role in the setting time and the compressive strength of TSC.The surface of TSC was covered by hydroxyapatite deposition during the immersion experiment and the cells attachment on the surface of TSC was well,which indicated that TSC has good bioactivity and biocompatibility.In addition,TSC has excellent antibacterial properties against Staphylococcus aureus.In conclusion,TSC is a promising candidate for root canal filling materials.
基金Funded by the National Natural Science Foundation of China(Nos.51302256 and 51672260)the Synergetic Innovation Center for Advanced Materials and State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)
文摘Influences of alkali oxides doping on the crystal structure, defects and hydration behavior of tricalcium silicate C_3S were investigated by X-ray powder diffraction with the Rietveld method, inductively coupled plasma optical emission spectroscopy, thermoluminescence and isothermal calorimetry. All the samples were stabilized as T1 form C_3S. Changes in the crystal structure of C_3S could mainly be monitored by changes in lattice parameters, which were closely correlated with the incorporation concentration and substitution types of alkalis. Although alkalis were incorporated at trace level in C_3S, the thermoluminescence and hydration behavior of C_3S were significantly influenced. Initial hydration activity was dramatically increased and highly related to the intensity of the irradiation-induced thermoluminescence peaks at low temperatures due to their direct correlation with defects. The oxygen vacancy sites resulting from the substitution of alkalis for Ca could readily account for the acceleration of the initial hydration of C_3S.
基金Funded by the National Basic Research Program of China (No.2009CB623100)National Eleven Five-Year Scientific and Technical Support Plans (No. 2006BAF02A24)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province(No. 08KJB430006)the Open Fund for the Key Laboratory of Inorganical and Composite Materials in Jiangsu Province(No.wjjqfhxc1200801)the Innovation Fund of Doctoral Dissertation of Nanjing University of Technology (No. BSCX200705)
文摘Formation and coexistence of tricalciurn silicate (C3S) and calcium sulphoaluminate ( C4 A3S^- ) minerals in Portland cement clinker containing calcium sulphoaluminate were investigated. Thef-CaO content, mineral composite and formation of mineral in the clinker were analyzed respectively by chemical analysis, differential scanning calorimetry(DSC) and X-ray diffraction. The results show that, adding a suitable amount of BaO can improve the burnability of raw meal and promote the f-CaO absorption. Tricalcium silicate and calcium sulphoaluminate minerals can form and coexist in clinkers at 1 234-1 317 ℃ by the addition of BaO to the raw meal. A suitable amount of BaO expanded the coexistence temperature of two minerals by 58 ℃.
基金This project was supported by grant from the National Natural Science Foundation of China (No.5949320O)
文摘Biodegradation of tricalcium phosphate (TCP) ceramics was observed through mixed culture of osteoclasts and TCP discs in vitro in this study. Osteo-clasts were isolated from newborn SD rat's marrow of long bone and cultured on TCP discs. The culture terminated at the 48th h and 96th h respectively. Under an inverted microscope, the osteoclasts imparted round or oval body with multinu-clear and many thin processes. These cells were positively stained for tartrate-re-sistance acid phosphatase (TRAP). Scanning electron microscope showed that many resorption lacunae on TCP disc surface and their diameters were smaller than 20 μm. Osteoclasts were located in the lacunae. At the 96th h, the resorption lacunae become larger and osteoclasts showed degeneration. It is suggested that osteoclasts possess ability to re-absorb TCP ceramics under in vitro culturing condition.
基金financially supported by the National Key Research and Development Program of China(Nos.2022YFB4601402)the National Natural Science Foundation of China(Nos.32201109,51772233)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Nos.2022B1515120052,2021A1515110557)the Key Basic Research Program of Shenzhen(No.JCYJ20200109150218836)the Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory(No.HJL202202A002)。
文摘Bone defect repair remains a troubling problem in clinical orthopedics,which involves complex biological processes.Calcium phosphates(CaPs)have been widely used owing to their advantage of biocompatibility.However,single component and traditional fabrication methods cannot meet the requirements of bioadaptability during the tissue repair process.In this work,0%,5%,15%,25%wt%of BG-TCP(bioactive glass-β-tricalcium phosphate)bioresorbable scaffolds with triply-periodic minimal surfaces(TPMS)-gyroid structure were prepared by the stereolithography(SLA)technology.TPMS-gyroid structure provided an accurate mimicry of natural bone tissue,and the incorporation of BG improved the compressive strength ofβ-TCP matrix,matched with the defective bone(2–12 MPa).Rapid but tunable degradation kinetics(compared with pure TCP)of BG enabled the BG-TCP system to sh8ow adaptable biodegradability to new bone generation.In vitro studies have shown that composite scaffolds have better mechanical properties(7.82 MPa),and can released appropriate contents of calcium,phosphorous,and magnesium ions,which promoted the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)and angiogenic ability of endothelial progenitor cells(EPCs).Moreover,the in vivo assessment of rat femoral defect revealed that TPMS-structure-based TCP scaffolds accelerated bone ingrowth to the pores.Moreover,BG-TCP scaffolds,especially 15BG-TCP group,exhibited superior bone regeneration capacity at both 4 and 8 weeks,which achieved an optimal match between the rate of material degradation and tissue regeneration.In summary,this study provides insight into influences of bioactive components(BG)and bionic structures(TPMS)on the physical-chemical properties of materials,cell behavior and tissue regeneration,which offers a promising strategy to design bioadaptive ceramic scaffolds in the clinical treatment of bone defects.
基金Project(2004CB619201) supported by the Major State Basic Research and Development Program of ChinaProject(Z200515002) supported by the Key Project Foundation of the Education Department of Hubei Province, China+1 种基金Project(GCP200801) supported by the Open Research Fund of Key Laboratory for Green Chemical Process of Ministry of Education, ChinaProject(Q200811) supported by the Youths Science Foundation of Wuhan Institute of Technology, China
文摘The phosphate solubilizing characteristics of a strain YC, which was isolated from phosphate mines (Hubei, China), were studied in National Botanical Research Institute’s phosphate (NBRIP) growth medium containing tricalcium phosphate (TCP) as sole phosphorus (P) source. The strain YC is identified as Stenotrophomonas maltophilia (S. maltophilia) based upon the results of morphologic, physiological and biochemical characteristics and 16S rRNA sequences analysis. The results show that the strain S. maltophilia YC can solubilize TCP and release soluble P in NBRIP growth medium. A positive correlation between concentration of soluble P and population of the isolate and a negative correlation between concentration of soluble P and pH in the culture medium are observed from statistical analysis results. Moreover, gluconic acid is detected in the culture medium by HPLC analysis. It indicates that the isolate can release gluconic acid during the solubilizing experiment, which causes acidification of the culture medium and then TCP solubilization. S. maltophilia YC has a maximal TCP solubilizing capability when using maltose as carbon source and ammonium nitrate as nitrogen source, respectively, in NBRIP growth medium.
基金Funded by National Basic Research Program of China(No. 2009CB623100)National Eleventh Five-Year Scientific and Technical Support Plans(No.2006BAF02A24)+2 种基金Natural Science Fund for Colleges and Universities in Jiangsu Province(No.08KJB430006)Open Fund for the Key Laboratory of Inorganical and Composite Materials in Jiangsu Province(No. wjjqfhxc1200801)Innovation Fund of Doctoral Dissertation of Nanjing University of Technology(No.BSCX200705)
文摘Optimization of the content of tricalcium silicate(C 3 S)of high cementing clinker was investigated.The content of free-CaO(f-CaO),mineral composite,the content of C 3 S in the clinker and the hydration product were analyzed by chemical analysis and X-ray diffraction(XRD)."K Value"method of QXRD was selected as a quantitative analysis way to measure the content of C 3 S,and the strength of cement paste was determined.The results show that at a water cement ratio of 0.29,the strength of cement paste with 73%C 3 S can be up to 97.5 MPa at 28 days age.The strength at 28 d of cement with 73%C 3 S is 16%higher than that with 78%C 3 S at water requirement for normal consistency.The relationship between the strength of high cementing Portland cement and the content of C 3 S in the clinker is nonlinear.According to the strength of cement paste,the optimal content of C 3 S in cement clinker is around 73%in this paper.
基金This study was financially supported by 863 Hi-Tech Research and Development Program of China(2002AA326080)The Fund for Youth Teacher of Education Ministry of China(2002123).
文摘Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering
文摘Porous β-tricalcium phosphate (TCP) displays osteoinductivity in certain animals in the absence of osteoinductive agents. We evaluated whether the microstructure may be an important determinant of osteoinduction, and also investigated how bone formation was promoted using β-TCP combined with bone marrow aspirates. We prepared two types of β-TCP, namely, β-TCP A, which possessed interconnected macropores and micropores, and β-TCP B, which possessed macropores but had less detectable micropores. These were implanted with or without marrow in canine muscles. Bone formation and the resorption of each β-TCP implant were evaluated histologically. Newly formed bone began to appear at day 42 in the implants of β-TCP A alone, but the implants of β-TCP B alone did not show any bone formation by day 42. Meanwhile, bone formation was already evident on day 14 by loading with bone marrow aspirates with or without micropores. By immunohistochemistry, the number of cathepsin K-positive cells (osteoclasts) increased as time passed in the implants of β-TCP A alone, while the number of the osteoclasts did not change obviously in the implants of β-TCP B alone from day 14 to 56. Reticular fibrils were evident within the β-TCP A, and were barely observed in the β-TCP B in the silver impregnation. The present result would bring about the possible role to enhance the importance of the surface microstructure for the better osteoinductivity. Our findings suggest that the combination of porous β-TCP and bone marrow facilitates bone formation.
文摘Osteoinductive properties of β-TCP remain unknown in humans. It is important to improve the bone grafts which have been the standard treatment for bone defect due to their biocompatibility and bone-healing properties. The purpose of this study was to radiologically clarify the bone forming property of β-TCP by evaluating the replacement of β-TCP by newly formed bone in the defect after fibular resection and to examine the histological features of a β-TCP specimen three months after grafting. Radiographs of 17 patients who underwent β-TCP grafting were evaluated. Osteoinductive and osteoconductive properties were assessed by examining bone formation from the remnant fibula, periosteum, and β-TCP alone. In one case, β-TCP was removed later because of postoperative complications and was evaluated histologically. Twenty two of 34 sites between the remnant fibula and β-TCP had achieved good bone regeneration. Five of 14 sites between the periosteum and β-TCP had achieved good bone regeneration. We found immature but evident bone formation in three cases with no osseous and periosteal sites. Histological analysis revealed bone formation on the outer macropore surface of β-TCP. Some blood vessels formed in the macropores expressed CD31 and CD34, while a few lymphatic vessels expressed CD34 and podoplanin. Thus, the osteoinductive ability of β-TCP alone was demonstrated in humans radiographically for the first time. The histological morphology of β-TCP was demonstrated at an early stage after grafting in humans.
基金Funded by the Science and Technology Planning Project of Guangdong Province(2013B010402019)the Natural Science Foundation of Guangdong Province(2015A030310345)the Medical Scientific Research Foundation of Guangdong Province(A2015352)
文摘We developed a fixation method and evaluate bone regrowth in the cavities of a Ф4 mm× 8 mm titanium(Ti)tube through porous hydroxyapatite(HAP)/β-tricalcium phosphate(β-TCP)composite filling(group A),chitosan/calcium phosphate composite filling(group B),and HAP particle modification(group C).After 2 and 5 months of implantation in dog tibia defects,new bone formation in the three groups was studied by histology and histomorphometry.Group A displayed the most bone regenerated area in both 2 and 5 months post-operation.The chitosan/calcium phosphate composite in group B mostly degraded 2 months after implantation,leading to fibrous tissue invasion after 5 months.By contrast,less bone formation was observed in group C.These results indicated that filling the cavities of metalprostheses with a porous HAP/β-TCP composite can be used for stable long-term fixation in clinicalsettings.
文摘In this work wollastonite/tricalcium phosphate (W/TCP) glass-ceramics with three W/TCP weight ratios (20/80;60/40 and 80/20) were implanted in rat calvaria and the modifications taking place during implantation were studied by Raman spectroscopy. The experimental glass-ceramics were composed of different contents of βW, αW, βTCP, αTCP, and glassy phases. Materials were implanted for 7-, 15-, 45- and 120-day periods after which the implanted materials were recovered and analyzed by FT-Raman spectroscopy. The results suggested that the αW phase reabsorbs fast during implantation in the glass-ceramics 60/40 and 80/20, whereas βTCP and αTCP glass-ceramic are gradually attenuated and replaced by biological apatite-like bands. In the glass-ceramic 20/80, the bands related to the βTCP phase remained unvaried in all analyzed periods. New bands associated with the deposition of collagenous material appeared during implantation for all 60/40 and 80/20 glass-ceramics experimental groups, but important differences in intensities between both groups. The spectra corresponding to implants of 60/40 glass-ceramic at the 120-day period were very similar to those of the control group (normal cortical bone), with regards to Raman shifts and intensities, as well as in the FWHM value of the 962 cm<sup>-1</sup> apatite band (ν1 PO4 in hydroxyapatite), evidencing that apatite deposited at the implant site has the same crystallinity than biological apatite in normal bone mineral. The glass-ceramic 20/80 behaved just as an osteoconductive filling material, while glass-ceramics 60/40 and 80/20 were able to induce deposition of organic matrix mineralized new tissue. The 60/40 glass-ceramic showed the best performance and the most similar Raman spectrum to normal cortical bone.
文摘The effect of addition of Zn, Cu, Pb and Cr chlorides as admixtures on the hydration reaction of the system 3CaO·Al2O3-gypsum with molar ratio 1:3 was studied. Different ratios of each salt were used, namely 0.5%, 2% and 4% by weight of the solid mixture. Hydration reaction was carried out at 35℃ for various time intervals from 0.5 h to up to 7 d. Hydration rate of the system 3CaO·Al2O3-CaSO4·2H2O in absence and presence of different salts was studied via the determination of the combined water contents. X-ray diffraction analysis showed that the ettringite was the only hydration product formed in the different mixes. The hydration products were investigated by scanning electron microscopy (SEM) and thermal gravimetric analysis. The results indicated that the rate of formation of ettringite and its microstructure depend on the admixture and its dosage.
文摘The bacterial inhibitory ability of a new drug delivery system (DDS):Ciprofloxacine/tricalcium phosphate delivery capsule (CTDC), its in vivo drug release pattern, and the influence of ultrasonic irradiation on its drug release were investigated. It was found that CTDC had a strong and sustained inhibitory ability to some common pathogens of bone and joint infections, such as staphylococcus aureus, escherichia coli and pseudomonas aeruginosa. In vivo drug-release study in animals demonstrated a high concentration of ciprofloxacine in the bone tissue surrounding CTDC which was placed in the greater trochanter of the rabbit and continued to release ciprofloxacine for at least 5 weeks and the blood level of ciprofloxacine was low. In vivo study also showed ultrasonic irradiation could increase the amount of ciprofloxacine released from CTDC, which may be an economical, effecient and safe new method to achieve the control of drug release from DDS.
文摘To study the effects of tricalcium phosphate (TCP) ceramics on osteoblasts, the rat osteoblasts were cultured with the TCP ceramics in vitro . Scanning electron microscopy and the colorimetric methyl thiazol tetrazolium assay showed that the osteoblasts could adhere well to the surface of the ceramics and the culture dish, and the proliferation of the cells was not inhibited. The results demonstrated that TCP ceramics possessed an excellent cytocompatibility with the osteoblasts, and had some promoting effects on proliferation of osteoblasts.
文摘The distribution and function of transforming growth factor-beta (TGF-β) in the region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone (Co/N-TCP) and the ability of Co/N-TCP recruiting osteoblasts to precipitate the repair of bone defect were investigated Twenty-four domestic rabbits were operated on bilateral cranial bone to create an experimental bone defect of 8 0 mm in diameter through the whole bone On the left, Co/N-TCP was implanted as experimental group, but on the right, Co/TCP was implanted as control group At 2nd, 4th, 8th, 12th week after operation, all animals were sacrificed and the implanted materials with surrounding bone were taken out Immunohistochemical staining was performed for TGF-β assay by avidin-biotin complex method (SABC) Simultaneously, TGF-β was quantitatively analyzed by HPIAS-1000 imaging analysis system The inmmunohistochemical staining for TGF-β revealed that osteoblasts and immature osteocytes highly expressed TGF-β Diffused TGF-β positive staining particles appeared in the mesenchymal and fibrous-tissue There was no significant difference in the TGF-β positive staining between two groups in the medial region to original osseous beds at different time points ( P >0 05) However, in distal original osseous bed of the defected region, the positive expression of TGF-β in the Co/N-TCP group was significantly stronger than in the control group ( P <0 05 or 0 01) The Co/N-TCP has good bioactivities and ability of stimulating and conducting TGF-β to aggregate and precipitate the healing of bone defect