The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalyt...The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center.Therefore,the electronic conductivity is a vital parameter for oxygen reduction reaction(ORR).Covalent triazine frameworks(CTFs)have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks.However,the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application.Herein,CTFs were constructed by introducing F and N co-modification for efficient 2e^(-)ORR.Compared with the pristine CTF,the co-presence of F,N could increase the conductivity obviously by 1000-fold.As a result,F-N-CTF exhibits enhanced catalytic performance of H_(2)O_(2)generation and selectivity towards reaction pathways.This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e^(-)ORR.展开更多
Photoinduced molecular oxygen activation is crucial for artificial photosynthesis.However,metal-free semiconductor photocatalysts with high activation efficiency are still lacking up to now.Herein,two isomorphic tris(...Photoinduced molecular oxygen activation is crucial for artificial photosynthesis.However,metal-free semiconductor photocatalysts with high activation efficiency are still lacking up to now.Herein,two isomorphic tris(triazolo)triazine-based covalent organic frameworks were successfully constructed under solvothermal conditions.And they possess high crystallinity,inherent porosity with large surface area and good stability.Strong electron donor-acceptor skeletons expand the visible light harvesting,also facilitate the charge separation and thus lead to their superior activity of photoinduced molecular oxygen activation including photosynthesis of tetrahydroquinolines and hydrogen peroxide.This work provides a way to improve the efficiency of molecular oxygen activation through the rational design of COFs,and also opens new avenues for the construction of highly active and metal-free photocatalysts toward sustainable solar-to-chemical energy conversion.展开更多
Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed ...Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed and synthesized a novel copper-coordinated covalent triazine framework(CuCTF)supported by silicon nanowire arrays on wafer chip.This marks the first-ever application of such a hybrid material in the photoelectrocatalytic reduction of CO_(2)under mild conditions.The Si@CuCTF6 heterojunction has exhibited exceptional selectivity of 95.6%towards multicarbon products(C_(2+))and apparent quantum efficiency(AQE)of 0.89%for carbon-based products.The active sites of the catalysts are derived from the nitrogen atoms of unique triazine ring structure in the ordered porous framework and the abundant Cu-N coordination sites with bipyridine units.Furthermore,through DFT calculations and operando FTIR spectra analysis,we proposed a comprehensive mechanism for the photoelectrocatalytic CO_(2)reduction,confirming the existence of key intermediate species such as*CO_(2)-,*=C=O,*CHO and*CO-CHO etc.This work not only provides a new way to mimic photosynthesis of plant leaves but also gives a new opportunity to enter this research field in the future.展开更多
基金the financial support by the National Natural Science Foundation of China(Nos.22205124,52172206)Natural Science Foundation of Shandong province(Nos.ZR2021QB070,ZR2023QB110)+2 种基金Basic Research Projects for the Pilot Project of Integrating Science and Education and Industry of Qilu University of Technology(Shandong Academy of Sciences)(Nos.2023PY024,2023PX108)Special Fund for Taishan Scholars Projectthe Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province。
文摘The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center.Therefore,the electronic conductivity is a vital parameter for oxygen reduction reaction(ORR).Covalent triazine frameworks(CTFs)have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks.However,the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application.Herein,CTFs were constructed by introducing F and N co-modification for efficient 2e^(-)ORR.Compared with the pristine CTF,the co-presence of F,N could increase the conductivity obviously by 1000-fold.As a result,F-N-CTF exhibits enhanced catalytic performance of H_(2)O_(2)generation and selectivity towards reaction pathways.This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e^(-)ORR.
文摘Photoinduced molecular oxygen activation is crucial for artificial photosynthesis.However,metal-free semiconductor photocatalysts with high activation efficiency are still lacking up to now.Herein,two isomorphic tris(triazolo)triazine-based covalent organic frameworks were successfully constructed under solvothermal conditions.And they possess high crystallinity,inherent porosity with large surface area and good stability.Strong electron donor-acceptor skeletons expand the visible light harvesting,also facilitate the charge separation and thus lead to their superior activity of photoinduced molecular oxygen activation including photosynthesis of tetrahydroquinolines and hydrogen peroxide.This work provides a way to improve the efficiency of molecular oxygen activation through the rational design of COFs,and also opens new avenues for the construction of highly active and metal-free photocatalysts toward sustainable solar-to-chemical energy conversion.
基金supported by Natural Science Foundation of Gansu Province(23JRRA745)the Fundamental Research Funds for the Central Universities(lzujbky2021-sp55).
文摘Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed and synthesized a novel copper-coordinated covalent triazine framework(CuCTF)supported by silicon nanowire arrays on wafer chip.This marks the first-ever application of such a hybrid material in the photoelectrocatalytic reduction of CO_(2)under mild conditions.The Si@CuCTF6 heterojunction has exhibited exceptional selectivity of 95.6%towards multicarbon products(C_(2+))and apparent quantum efficiency(AQE)of 0.89%for carbon-based products.The active sites of the catalysts are derived from the nitrogen atoms of unique triazine ring structure in the ordered porous framework and the abundant Cu-N coordination sites with bipyridine units.Furthermore,through DFT calculations and operando FTIR spectra analysis,we proposed a comprehensive mechanism for the photoelectrocatalytic CO_(2)reduction,confirming the existence of key intermediate species such as*CO_(2)-,*=C=O,*CHO and*CO-CHO etc.This work not only provides a new way to mimic photosynthesis of plant leaves but also gives a new opportunity to enter this research field in the future.